Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Adv Sci (Weinh). 2024 Apr;11(14):e2306478. doi: 10.1002/advs.202306478. Epub 2024 Feb 2.
Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.
快速筛选策略能够从多样化的酶库中高通量评估和鉴定所需的变体,这对于定制用于合成 D-阿洛酮糖的生物催化剂至关重要,而目前这一过程受到酮糖 3-差向异构酶(KEase)催化性能差的限制。在这里,研究设计了一种最小依赖设备、高通量、与生长偶联的体内筛选平台,该平台建立在重新设计的 D-阿洛酮糖依赖生物传感器系统之上。调节 PsiR 表达水平的遗传元件经过系统优化,以提高生物传感器的生长响应动态范围,该传感器对 0 至 100mm 的 D-阿洛酮糖浓度表现出约 30 倍的促进生长光密度和高信噪比(1.52 至 0.05)。对农杆菌 SUL3 D-阿洛酮糖 3-差向异构酶(ADAE)的结构分析和进化保守性分析揭示了一个高度保守的催化活性位点和可变的疏水性口袋,它们共同调节底物识别。使用生长偶联的体内筛选平台实施结构引导的理性设计和定向进化,对 ADAE 进行重新编程,其中鉴定出一个突变体 M42(P38N/V102A/Y201L/S207N/I251R),其催化活性提高了 6.28 倍,热稳定性显著提高,半衰期在 60°C 时提高了 2.5 倍。该研究表明,生物传感器辅助的生长偶联进化压力与结构引导的理性设计相结合,为 KEase 的工程设计提供了一种通用途径。