Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany.
Magn Reson Med. 2024 Jul;92(1):69-81. doi: 10.1002/mrm.30034. Epub 2024 Feb 2.
The purpose of the study is to identify differences between axisymmetric diffusion kurtosis imaging (DKI) and standard DKI, their consequences for biophysical parameter estimates, and the protocol choice influence on parameter estimation.
Noise-free and noisy, synthetic diffusion MRI human brain data is simulated using standard DKI for a standard and the fast "199" acquisition protocol. First the noise-free "baseline" difference between both DKI models is estimated and the influence of fiber complexity is investigated. Noisy data is used to establish the signal-to-noise ratio at which the baseline difference exceeds noise variability. The influence of protocol choices and denoising is investigated. The five axisymmetric DKI tensor metrics (AxTM), the parallel and perpendicular diffusivity and kurtosis and mean of the kurtosis tensor are used to compare both DKI models. Additionally, the baseline difference is also estimated for the five parameters of the WMTI-Watson model.
The parallel and perpendicular kurtosis and all of the WMTI-Watson parameters had large baseline differences. Using a Westin or FA mask reduced the number of voxels with large baseline difference, that is, by selecting voxels with less complex fibers. For the noisy data, precision was worsened by the fast "199" protocol but adaptive denoising can help counteract these effects.
For the diffusivities and mean of the kurtosis tensor, axisymmetric DKI with a standard protocol delivers similar results as standard DKI. Fiber complexity is one main driver of the baseline differences. Using the "199" protocol worsens precision in noisy data but adaptive denoising mitigates these effects.
本研究旨在识别轴对称扩散峰度成像(DKI)与标准 DKI 之间的差异、它们对生物物理参数估计的影响,以及协议选择对参数估计的影响。
使用标准 DKI 模拟无噪声和有噪声的、合成的人脑扩散 MRI 数据,分别针对标准和快速“199”采集协议。首先,估计两种 DKI 模型之间无噪声的“基线”差异,并研究纤维复杂性的影响。使用有噪声的数据来确定基线差异超过噪声变化的信噪比。研究协议选择和去噪的影响。使用五个轴对称 DKI 张量度量(AxTM)、平行和垂直扩散率以及峰度和峰度张量的平均值来比较两种 DKI 模型。此外,还对 WMTI-Watson 模型的五个参数估计了基线差异。
平行和垂直峰度以及所有 WMTI-Watson 参数都有较大的基线差异。使用 Westin 或 FA 掩模减少了具有较大基线差异的体素数量,即通过选择纤维复杂性较低的体素来实现。对于有噪声的数据,快速“199”协议会降低精度,但自适应去噪可以帮助抵消这些影响。
对于扩散率和峰度张量的平均值,使用标准协议的轴对称 DKI 可提供与标准 DKI 相似的结果。纤维复杂性是基线差异的主要驱动因素之一。使用“199”协议会降低噪声数据的精度,但自适应去噪可以减轻这些影响。