Suppr超能文献

一种基于机器学习的经皮肾镜取石术后脓毒症预测新模型。

A novel post-percutaneous nephrolithotomy sepsis prediction model using machine learning.

机构信息

Department of Urology, Shanghai Changhai Hospital, No.168 Changhai Rd, Shanghai, 200433, China.

Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.

出版信息

BMC Urol. 2024 Feb 2;24(1):27. doi: 10.1186/s12894-024-01414-x.

Abstract

OBJECTIVES

To establish a predictive model for sepsis after percutaneous nephrolithotomy (PCNL) using machine learning to identify high-risk patients and enable early diagnosis and intervention by urologists.

METHODS

A retrospective study including 694 patients who underwent PCNL was performed. A predictive model for sepsis using machine learning was constructed based on 22 preoperative and intraoperative parameters.

RESULTS

Sepsis occurred in 45 of 694 patients, including 16 males (35.6%) and 29 females (64.4%). Data were randomly segregated into an 80% training set and a 20% validation set via 100-fold Monte Carlo cross-validation. The variables included in this study were highly independent. The model achieved good predictive power for postoperative sepsis (AUC = 0.89, 87.8% sensitivity, 86.9% specificity, and 87.4% accuracy). The top 10 variables that contributed to the model prediction were preoperative midstream urine bacterial culture, sex, days of preoperative antibiotic use, urinary nitrite, preoperative blood white blood cell (WBC), renal pyogenesis, staghorn stones, history of ipsilateral urologic surgery, cumulative stone diameters, and renal anatomic malformation.

CONCLUSION

Our predictive model is suitable for sepsis estimation after PCNL and could effectively reduce the incidence of sepsis through early intervention.

摘要

目的

利用机器学习建立经皮肾镜碎石取石术(PCNL)后脓毒症的预测模型,以识别高危患者,使泌尿科医生能够早期诊断和干预。

方法

对 694 例接受 PCNL 治疗的患者进行回顾性研究。基于 22 个术前和术中参数,构建了一个用于脓毒症预测的机器学习模型。

结果

694 例患者中发生脓毒症 45 例,其中男性 16 例(35.6%),女性 29 例(64.4%)。通过 100 倍蒙特卡罗交叉验证,将数据随机分为 80%的训练集和 20%的验证集。本研究纳入的变量高度独立。该模型对术后脓毒症具有良好的预测能力(AUC=0.89,敏感性 87.8%,特异性 86.9%,准确性 87.4%)。对模型预测贡献最大的前 10 个变量是术前中段尿细菌培养、性别、术前抗生素使用天数、尿亚硝酸盐、术前白细胞(WBC)、肾积脓、鹿角结石、同侧泌尿外科手术史、结石累计直径和肾解剖畸形。

结论

我们的预测模型适用于 PCNL 后脓毒症的估计,可以通过早期干预有效降低脓毒症的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a0a/10837989/84c98cbbdaac/12894_2024_1414_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验