Suppr超能文献

人工智能在尿路结石的诊断、治疗和预防中的应用。

Artificial intelligence in the diagnosis, treatment and prevention of urinary stones.

机构信息

Royal Hampshire Hospital, Winchester, UK.

Department of Urology and Kidney Transplant, GOM, Reggio Calabria, Italy.

出版信息

Curr Opin Urol. 2020 Nov;30(6):782-787. doi: 10.1097/MOU.0000000000000820.

Abstract

PURPOSE OF REVIEW

There has a been rapid progress in the use of artificial intelligence in all aspects of healthcare, and in urology, this is particularly astute in the overall management of urolithiasis. This article reviews advances in the use of artificial intelligence for the diagnosis, treatment and prevention of urinary stone disease over the last 2 years. Pertinent studies were identified via a nonsystematic review of the literature performed using MEDLINE and the Cochrane database.

RECENT FINDINGS

Twelve articles have been published, which met the inclusion criteria. This included three articles in the detection and diagnosis of stones, six in the prediction of postprocedural outcomes including percutaneous nephrolithotomy and shock wave lithotripsy, and three in the use of artificial intelligence in prevention of stone disease by predicting patients at risk of stones, detecting the stone type via digital photographs and detecting risk factors in patients most at risk of not attending outpatient appointments.

SUMMARY

Our knowledge of artificial intelligence in urology has greatly advanced in the last 2 years. Its role currently is to aid the endourologist as opposed to replacing them. However, the ability of artificial intelligence to efficiently process vast quantities of data, in combination with the shift towards electronic patient records provides increasingly more 'big data' sets. This will allow artificial intelligence to analyse and detect novel diagnostic and treatment patterns in the future.

摘要

目的综述

人工智能在医疗保健的各个方面都取得了快速的进展,在泌尿科领域,这在尿路结石的整体管理中尤为明显。本文回顾了过去 2 年中人工智能在诊断、治疗和预防尿路结石疾病方面的应用进展。通过对 MEDLINE 和 Cochrane 数据库进行非系统性文献回顾,确定了相关研究。

最近的发现

共发表了 12 篇符合纳入标准的文章。其中包括 3 篇关于结石检测和诊断的文章,6 篇关于经皮肾镜取石术和体外冲击波碎石术术后结果预测的文章,以及 3 篇关于人工智能在预防结石病中的应用的文章,包括预测结石高危患者、通过数字照片检测结石类型以及检测最易漏诊的高危患者的风险因素。

总结

在过去的 2 年中,我们对泌尿外科人工智能的认识有了很大的提高。它目前的作用是辅助腔内泌尿外科医生,而不是取代他们。然而,人工智能处理大量数据的能力,结合向电子病历的转变,提供了越来越多的“大数据”集。这将使人工智能能够在未来分析和检测新的诊断和治疗模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验