Suppr超能文献

预测具有子宫内膜癌和宫角增生的保留生育功能患者的完全缓解:在中国大样本队列中的 GLOBAL 模型。

Prediction of complete regression in fertility-sparing patients with endometrial cancer and apical hyperplasia: the GLOBAL model in a large Chinese cohort.

机构信息

Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.

出版信息

J Transl Med. 2024 Feb 2;22(1):127. doi: 10.1186/s12967-023-04671-w.

Abstract

BACKGROUND

Fertility preservation treatment is increasingly essential for patients with apical endometrial hyperplasia (AEH) and early endometrial cancer (EEC) worldwide. Complete regression (CR) is the main endpoint of this treatment. Accurately predicting CR and implementing appropriate interventions during treatment are crucial for these patients.

METHODS

We conducted a retrospective study involving 193 patients diagnosed with atypical AEH or EEC, enrolled from January 2012 to March 2022 at our center. We evaluated 24 clinical parameters as candidate predictors and employed LASSO regression to develop a prediction model for CR. Subsequently, a nomogram was constructed to predict CR after the treatment. We evaluated the performance of the nomogram using receiver operator characteristic (ROC) curve and decision curve analysis (DCA) to assess its predictive accuracy. Additionally, we employed cumulative curves to determine the CR rate among patients.

RESULTS

Out of the 193 patients, 173 achieved CR after undergoing fertility preservation treatment. We categorized features with similar properties and provided a list of formulas based on their coefficients. The final model, named GLOBAL (including basic information, characteristics, blood pressure, glucose metabolism, lipid metabolism, immunohistochemistry, histological type, and medication), comprised eight variables identified using LASSO regression. A nomogram incorporating these eight risk factors was developed to predict CR. The GLOBAL model exhibited an AUC of 0.907 (95% CI 0.828-0.969). Calibration plots demonstrated a favorable agreement between the predicted probability by the GLOBAL model and actual observations in the cohort. The cumulative curve analysis revealed varying cumulative CR rates among patients in the eight subgroups. Categorized analysis demonstrated significant diversity in the effects of the GLOBAL model on CR among patients with different total points (p < 0.05).

CONCLUSION

We have developed and validated a model that significantly enhances the predictive accuracy of CR in AEH and EEC patients seeking fertility preservation treatment.

摘要

背景

在全球范围内,生育力保存治疗对于患有宫角内膜增生(AEH)和早期子宫内膜癌(EEC)的患者变得越来越重要。完全缓解(CR)是这种治疗的主要终点。准确预测 CR 并在治疗过程中实施适当的干预措施对这些患者至关重要。

方法

我们进行了一项回顾性研究,纳入了 2012 年 1 月至 2022 年 3 月在我们中心诊断为不典型 AEH 或 EEC 的 193 名患者。我们评估了 24 个临床参数作为候选预测指标,并采用 LASSO 回归建立了 CR 的预测模型。随后,构建了一个列线图来预测治疗后的 CR。我们使用受试者工作特征(ROC)曲线和决策曲线分析(DCA)评估列线图的性能,以评估其预测准确性。此外,我们还采用累积曲线来确定患者中的 CR 率。

结果

在 193 名患者中,有 173 名在接受生育力保存治疗后达到 CR。我们对具有相似性质的特征进行了分类,并根据它们的系数提供了一个公式列表。最终模型命名为 GLOBAL(包括基本信息、特征、血压、血糖代谢、血脂代谢、免疫组化、组织学类型和药物治疗),由 LASSO 回归确定的 8 个变量组成。建立了一个包含这 8 个危险因素的列线图来预测 CR。GLOBAL 模型的 AUC 为 0.907(95%CI 0.828-0.969)。校准图表明,GLOBAL 模型预测的概率与队列中的实际观察结果之间存在良好的一致性。累积曲线分析显示,在 8 个亚组中,患者的累积 CR 率存在差异。分类分析表明,在具有不同总分的患者中,GLOBAL 模型对 CR 的影响存在显著差异(p<0.05)。

结论

我们开发并验证了一个模型,该模型显著提高了 AEH 和 EEC 患者生育力保存治疗中 CR 的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f41/10837883/ae3eb985acf3/12967_2023_4671_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验