Suppr超能文献

使用多变量时间序列聚类发现可推广的创伤性脑损伤表型

Discovery of Generalizable TBI Phenotypes Using Multivariate Time-Series Clustering.

作者信息

Ghaderi Hamid, Foreman Brandon, Reddy Chandan K, Subbian Vignesh

机构信息

Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA.

College of Medicine, University of Cincinnati, Cincinnati, OH, USA.

出版信息

ArXiv. 2024 Aug 20:arXiv:2401.08002v2.

Abstract

Traumatic Brain Injury (TBI) presents a broad spectrum of clinical presentations and outcomes due to its inherent heterogeneity, leading to diverse recovery trajectories and varied therapeutic responses. While many studies have delved into TBI phenotyping for distinct patient populations, identifying TBI phenotypes that consistently generalize across various settings and populations remains a critical research gap. Our research addresses this by employing multivariate time-series clustering to unveil TBI's dynamic intricates. Utilizing a self-supervised learning-based approach to clustering multivariate time-Series data with missing values (SLAC-Time), we analyzed both the research-centric TRACK-TBI and the real-world MIMIC-IV datasets. Remarkably, the optimal hyperparameters of SLAC-Time and the ideal number of clusters remained consistent across these datasets, underscoring SLAC-Time's stability across heterogeneous datasets. Our analysis revealed three generalizable TBI phenotypes (α, β, and γ), each exhibiting distinct non-temporal features during emergency department visits, and temporal feature profiles throughout ICU stays. Specifically, phenotype α represents mild TBI with a remarkably consistent clinical presentation. In contrast, phenotype β signifies severe TBI with diverse clinical manifestations, and phenotype γ represents a moderate TBI profile in terms of severity and clinical diversity. Age is a significant determinant of TBI outcomes, with older cohorts recording higher mortality rates. Importantly, while certain features varied by age, the core characteristics of TBI manifestations tied to each phenotype remain consistent across diverse populations.

摘要

由于其固有的异质性,创伤性脑损伤(TBI)呈现出广泛的临床表现和结果,导致不同的恢复轨迹和不同的治疗反应。虽然许多研究已经深入探讨了针对不同患者群体的TBI表型分析,但确定在各种环境和人群中都能一致概括的TBI表型仍然是一个关键的研究空白。我们的研究通过采用多变量时间序列聚类来揭示TBI的动态复杂性来解决这个问题。利用基于自监督学习的方法对存在缺失值的多变量时间序列数据进行聚类(SLAC-Time),我们分析了以研究为中心的TRACK-TBI和真实世界的MIMIC-IV数据集。值得注意的是,SLAC-Time的最佳超参数和理想的聚类数量在这些数据集中保持一致,这突出了SLAC-Time在异构数据集中的稳定性。我们的分析揭示了三种可概括的TBI表型(α、β和γ),每种表型在急诊科就诊期间表现出不同的非时间特征,在整个ICU住院期间表现出时间特征概况。具体而言,表型α代表具有非常一致临床表现的轻度TBI。相比之下,表型β表示具有多种临床表现的重度TBI,表型γ在严重程度和临床多样性方面代表中度TBI概况。年龄是TBI结果的一个重要决定因素,老年人群的死亡率更高。重要的是,虽然某些特征因年龄而异,但与每种表型相关的TBI表现的核心特征在不同人群中保持一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/11421502/9a1a15b62417/nihpp-2401.08002v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验