Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA.
College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
Comput Biol Med. 2024 Sep;180:108997. doi: 10.1016/j.compbiomed.2024.108997. Epub 2024 Aug 12.
Traumatic Brain Injury (TBI) presents a broad spectrum of clinical presentations and outcomes due to its inherent heterogeneity, leading to diverse recovery trajectories and varied therapeutic responses. While many studies have delved into TBI phenotyping for distinct patient populations, identifying TBI phenotypes that consistently generalize across various settings and populations remains a critical research gap. Our research addresses this by employing multivariate time-series clustering to unveil TBI's dynamic intricates. Utilizing a self-supervised learning-based approach to clustering multivariate time-Series data with missing values (SLAC-Time), we analyzed both the research-centric TRACK-TBI and the real-world MIMIC-IV datasets. Remarkably, the optimal hyperparameters of SLAC-Time and the ideal number of clusters remained consistent across these datasets, underscoring SLAC-Time's stability across heterogeneous datasets. Our analysis revealed three generalizable TBI phenotypes (α, β, and γ), each exhibiting distinct non-temporal features during emergency department visits, and temporal feature profiles throughout ICU stays. Specifically, phenotype α represents mild TBI with a remarkably consistent clinical presentation. In contrast, phenotype β signifies severe TBI with diverse clinical manifestations, and phenotype γ represents a moderate TBI profile in terms of severity and clinical diversity. Age is a significant determinant of TBI outcomes, with older cohorts recording higher mortality rates. Importantly, while certain features varied by age, the core characteristics of TBI manifestations tied to each phenotype remain consistent across diverse populations.
创伤性脑损伤 (TBI) 因其固有异质性而呈现出广泛的临床表现和结局,导致不同的恢复轨迹和不同的治疗反应。尽管许多研究已经深入探讨了不同患者群体的 TBI 表型,但确定能够在各种环境和人群中普遍适用的 TBI 表型仍然是一个关键的研究空白。我们的研究通过采用多变量时间序列聚类来揭示 TBI 的动态复杂性来解决这个问题。我们使用基于自监督学习的方法来对具有缺失值的多变量时间序列数据进行聚类 (SLAC-Time),分析了以研究为中心的 TRACK-TBI 和真实世界的 MIMIC-IV 数据集。值得注意的是,SLAC-Time 的最佳超参数和理想的聚类数量在这些数据集中保持一致,这突显了 SLAC-Time 在异构数据集中的稳定性。我们的分析揭示了三种可推广的 TBI 表型 (α、β 和 γ),它们在急诊科就诊期间表现出不同的非时间特征,并且在 ICU 住院期间表现出不同的时间特征谱。具体来说,表型 α 代表轻度 TBI,其临床表现非常一致。相比之下,表型 β 表示严重 TBI,其临床表现多样,而表型 γ 则表示严重程度和临床多样性方面的中度 TBI 谱。年龄是 TBI 结局的一个重要决定因素,年龄较大的队列记录的死亡率更高。重要的是,虽然某些特征因年龄而异,但与每种表型相关的 TBI 表现的核心特征在不同人群中保持一致。