Suppr超能文献

基于全长 16S rRNA 基因测序的食源性致病菌血清型鉴定。

Serovar-level identification of bacterial foodborne pathogens from full-length 16S rRNA gene sequencing.

机构信息

Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.

Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

mSystems. 2024 Mar 19;9(3):e0075723. doi: 10.1128/msystems.00757-23. Epub 2024 Feb 6.

Abstract

The resolution of variation within species is critical for interpreting and acting on many microbial measurements. In the key foodborne pathogens and , the primary subspecies classification scheme used is serotyping: differentiating variants within these species by surface antigen profiles. Serotype prediction from whole-genome sequencing (WGS) of isolates is now seen as comparable or preferable to traditional laboratory methods where WGS is available. However, laboratory and WGS methods depend on an isolation step that is time-consuming and incompletely represents the sample when multiple strains are present. Community sequencing approaches that skip the isolation step are, therefore, of interest for pathogen surveillance. Here, we evaluated the viability of amplicon sequencing of the full-length 16S rRNA gene for serotyping and . We developed a novel algorithm for serotype prediction, implemented as an R package (Seroplacer), which takes as input full-length 16S rRNA gene sequences and outputs serovar predictions after phylogenetic placement into a reference phylogeny. We achieved over 89% accuracy in predicting serotypes on test data and identified key pathogenic serovars of and in isolate and environmental test samples. Although serotype prediction from 16S rRNA gene sequences is not as accurate as serotype prediction from WGS of isolates, the potential to identify dangerous serovars directly from amplicon sequencing of environmental samples is intriguing for pathogen surveillance. The capabilities developed here are also broadly relevant to other applications where intraspecies variation and direct sequencing from environmental samples could be valuable.IMPORTANCEIn order to prevent and stop outbreaks of foodborne pathogens, it is important that we can detect when pathogenic bacteria are present in a food or food-associated site and identify connections between specific pathogenic bacteria present in different samples. In this work, we develop a new computational technology that allows the important foodborne pathogens and to be serotyped (a subspecies level classification) from sequencing of a single-marker gene, and the 16S rRNA gene often used to surveil bacterial communities. Our results suggest current limitations to serotyping from 16S rRNA gene sequencing alone but set the stage for further progress that we consider likely given the rapid advance in the long-read sequencing technologies and genomic databases our work leverages. If this research direction succeeds, it could enable better detection of foodborne pathogens before they reach the public and speed the resolution of foodborne pathogen outbreaks.

摘要

解析种内变异对于解释和处理许多微生物测量结果至关重要。在关键的食源性致病菌 和 中,主要的亚种分类方案是血清分型:通过表面抗原特征来区分这些物种内的变体。从分离株的全基因组测序 (WGS) 中预测血清型现在被认为与传统实验室方法相当或更优,传统实验室方法依赖于耗时且不完全代表存在多种菌株的样本的分离步骤。因此,跳过分离步骤的社区测序方法对于病原体监测很有意义。在这里,我们评估了全长 16S rRNA 基因扩增子测序用于 和 的血清分型的可行性。我们开发了一种新的血清型预测算法,实现为 R 包(Seroplacer),该算法接受全长 16S rRNA 基因序列作为输入,并在将其 phylo-genetically 放置到参考系统发育树后输出血清型预测结果。我们在测试数据上实现了超过 89%的 血清型预测准确性,并在分离株和环境测试样本中鉴定出 和 的关键致病性血清型。尽管 16S rRNA 基因序列的血清型预测不如分离株的 WGS 预测准确,但从环境样本的扩增子测序中直接鉴定危险血清型的潜力对于病原体监测来说非常有趣。这里开发的功能对于其他应用也具有广泛的相关性,在这些应用中,种内变异和直接从环境样本测序可能具有价值。

重要性

为了预防和阻止食源性致病菌的爆发,重要的是我们能够在食物或与食物相关的地点发现致病性细菌存在,并识别不同样本中存在的特定致病性细菌之间的联系。在这项工作中,我们开发了一种新的计算技术,该技术允许通过对单个标记基因(16S rRNA 基因,通常用于监测细菌群落)的测序来对 和 进行血清型(亚种水平的分类)。我们的结果表明,目前仅从 16S rRNA 基因测序进行血清型鉴定存在局限性,但考虑到我们工作所利用的长读测序技术和基因组数据库的快速发展,我们认为这为进一步进展奠定了基础。如果这一研究方向取得成功,它可以在食源性致病菌进入公众视野之前更好地进行检测,并加速食源性致病菌爆发的解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec8/10949465/97f2396f9687/msystems.00757-23.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验