Papa MeiLi, Bhattacharya Siddhartha, Park Bosoon, Yi Jiyoon
Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
Foods. 2025 Aug 5;14(15):2737. doi: 10.3390/foods14152737.
serovar identification typically requires multiple enrichment steps using selective media, consuming considerable time and resources. This study presents a rapid, culture-independent method leveraging artificial intelligence (AI) to classify serovars from rich hyperspectral microscopy data. Five serovars (Enteritidis, Infantis, Kentucky, Johannesburg, 4,[5],12:i:-) were analyzed from samples prepared using only sterilized de-ionized water. Hyperspectral data cubes were collected to generate single-cell spectra and RGB composite images representing the full microscopy field. Data analysis involved two parallel branches followed by multimodal fusion. The spectral branch compared manual feature selection with data-driven feature extraction via principal component analysis (PCA), followed by classification using conventional machine learning models (i.e., -nearest neighbors, support vector machine, random forest, and multilayer perceptron). The image branch employed a convolutional neural network (CNN) to extract spatial features directly from images without predefined morphological descriptors. Using PCA-derived spectral features, the highest performing machine learning model achieved 81.1% accuracy, outperforming manual feature selection. CNN-based classification using image features alone yielded lower accuracy (57.3%) in this serovar-level discrimination. In contrast, a multimodal fusion model combining spectral and image features improved accuracy to 82.4% on the unseen test set while reducing overfitting on the train set. This study demonstrates that AI-enabled hyperspectral microscopy with multimodal fusion can streamline serovar identification workflows.
血清型鉴定通常需要使用选择性培养基进行多个富集步骤,这会消耗大量时间和资源。本研究提出了一种快速、无需培养的方法,利用人工智能(AI)从丰富的高光谱显微镜数据中对血清型进行分类。从仅使用无菌去离子水制备的样本中分析了五种血清型(肠炎沙门氏菌、婴儿沙门氏菌、肯塔基沙门氏菌、约翰内斯堡沙门氏菌、4,[5],12:i:-)。收集高光谱数据立方体以生成单细胞光谱和代表整个显微镜视野的RGB合成图像。数据分析包括两个并行分支,然后进行多模态融合。光谱分支将手动特征选择与通过主成分分析(PCA)进行的数据驱动特征提取进行比较,随后使用传统机器学习模型(即k近邻、支持向量机、随机森林和多层感知器)进行分类。图像分支采用卷积神经网络(CNN)直接从图像中提取空间特征,无需预定义的形态学描述符。使用PCA衍生的光谱特征,性能最佳的机器学习模型实现了81.1%的准确率,优于手动特征选择。仅使用图像特征的基于CNN的分类在这种血清型水平的区分中准确率较低(57.3%)。相比之下,结合光谱和图像特征的多模态融合模型在未见过的测试集上提高了准确率至82.4%,同时减少了训练集上的过拟合。本研究表明,具有多模态融合的人工智能驱动的高光谱显微镜可以简化血清型鉴定工作流程。