Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany.
Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany.
Curr Biol. 2024 Mar 25;34(6):1206-1221.e6. doi: 10.1016/j.cub.2024.01.036. Epub 2024 Feb 5.
The physiological performance of any sensory organ is determined by its anatomy and physical properties. Consequently, complex sensory structures with elaborate features have evolved to optimize stimulus detection. Understanding these structures and their physical nature forms the basis for mechanistic insights into sensory function. Despite its crucial role as a sensor for pheromones and other behaviorally instructive chemical cues, the vomeronasal organ (VNO) remains a poorly characterized mammalian sensory structure. Fundamental principles of its physico-mechanical function, including basic aspects of stimulus sampling, remain poorly explored. Here, we revisit the classical vasomotor pump hypothesis of vomeronasal stimulus uptake. Using advanced anatomical, histological, and physiological methods, we demonstrate that large parts of the lateral mouse VNO are composed of smooth muscle. Vomeronasal smooth muscle tissue comprises two subsets of fibers with distinct topography, structure, excitation-contraction coupling, and, ultimately, contractile properties. Specifically, contractions of a large population of noradrenaline-sensitive cells mediate both transverse and longitudinal lumen expansion, whereas cholinergic stimulation targets an adluminal group of smooth muscle fibers. The latter run parallel to the VNO's rostro-caudal axis and are ideally situated to mediate antagonistic longitudinal constriction of the lumen. This newly discovered arrangement implies a novel mode of function. Single-cell transcriptomics and pharmacological profiling reveal the receptor subtypes involved. Finally, 2D/3D tomography provides non-invasive insight into the intact VNO's anatomy and mechanics, enables measurement of luminal fluid volume, and allows an assessment of relative volume change upon noradrenergic stimulation. Together, we propose a revised conceptual framework for mouse vomeronasal pumping and, thus, stimulus sampling.
任何感觉器官的生理性能都由其解剖结构和物理特性决定。因此,为了优化刺激检测,已经进化出了具有精细特征的复杂感觉结构。了解这些结构及其物理性质是理解感觉功能的机械原理的基础。尽管犁鼻器(VNO)作为一种嗅觉和其他行为指导化学线索的传感器具有至关重要的作用,但它仍然是一种特征描述较差的哺乳动物感觉结构。其物理机械功能的基本原理,包括刺激采样的基本方面,仍未得到充分探索。在这里,我们重新审视了犁鼻器刺激摄取的经典血管运动泵假说。我们使用先进的解剖学、组织学和生理学方法,证明了大部分的外侧小鼠犁鼻器是由平滑肌组成的。犁鼻器平滑肌组织包含两个具有不同拓扑结构、结构、兴奋-收缩偶联和最终收缩特性的纤维子集。具体来说,大群去甲肾上腺素敏感细胞的收缩介导了横向和纵向管腔扩张,而胆碱能刺激则靶向管腔外的平滑肌纤维群。后者与犁鼻器的前后轴平行排列,非常适合介导管腔的拮抗性纵向收缩。这种新发现的排列方式暗示了一种新的功能模式。单细胞转录组学和药理学分析揭示了涉及的受体亚型。最后,2D/3D 断层扫描提供了对完整犁鼻器解剖结构和力学的非侵入性洞察,允许测量管腔中的流体体积,并评估去甲肾上腺素刺激时的相对体积变化。总之,我们提出了一个修订后的概念框架,用于描述小鼠犁鼻器的泵送和刺激采样过程。