Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, USA; email:
Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay.
Annu Rev Biophys. 2021 May 6;50:575-593. doi: 10.1146/annurev-biophys-062920-063631.
The phasor approach to fluorescence lifetime imaging has become a common method to analyze complicated fluorescence signals from biological samples. The appeal of the phasor representation of complex fluorescence decays in biological systems is that a visual representation of the decay of entire cells or tissues can be used to easily interpret fundamental biological states related to metabolism and oxidative stress. Phenotyping based on autofluorescence provides new avenues for disease characterization and diagnostics. The phasor approach is a transformation of complex fluorescence decays that does not use fits to model decays and therefore has the same information content as the original data. The phasor plot is unique for a given system, is highly reproducible, and provides a robust method to evaluate the existence of molecular interactions such as Förster resonance energy transfer or the response of ion indicators. Recent advances permitquantification of multiple components from phasor plots in fluorescence lifetime imaging microscopy, which is not presently possible using data fitting methods, especially in biological systems.
荧光寿命成像的相量方法已经成为分析生物样本中复杂荧光信号的常用方法。在生物系统中,复杂荧光衰减的相量表示法之所以具有吸引力,是因为可以使用整个细胞或组织衰减的直观表示来轻松解释与代谢和氧化应激相关的基本生物学状态。基于自发荧光的表型分析为疾病特征描述和诊断提供了新途径。相量方法是对复杂荧光衰减的变换,不使用拟合来模拟衰减,因此与原始数据具有相同的信息量。对于给定的系统,相量图是唯一的,高度可重复,并且提供了一种强大的方法来评估分子相互作用的存在,例如Förster 共振能量转移或离子指示剂的响应。最近的进展允许从荧光寿命成像显微镜的相量图中定量多个分量,这目前使用数据拟合方法是不可能的,特别是在生物系统中。