Wu Kangling, Mariello Massimo, Leterrier Yves, Lacour Stéphanie P
Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland.
Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
Adv Mater. 2024 Jun;36(24):e2310201. doi: 10.1002/adma.202310201. Epub 2024 Mar 19.
The stability of long-term microfabricated implants is hindered by the presence of multiple water diffusion paths within artificially patterned thin-film encapsulations. Side permeation, defined as infiltration of molecules through the lateral surface of the thin structure, becomes increasingly critical with the trend of developing high-density and miniaturized neural electrodes. However, current permeability measurement methods do not account for side permeation accurately nor quantitatively. Here, a novel optical, magnesium (Mg)-based method is proposed to quantify the side water transmission rate (SWTR) through thin film encapsulation and validate the approach using micrometric polyimide (PI) and polyimide-silicon carbide (PI-SiC) multilayers. Through computed digital grayscale images collected with corroding Mg film microcells coated with the thin encapsulation, side and surface WTRs are quantified. A 4.5-fold ratio between side and surface permeation is observed, highlighting the crucial role of the PI-PI interface in lateral diffusion. Universal guidelines for the design of flexible, hermetic neural interfaces are proposed. Increasing encapsulation's width (interelectrode spacing), creating stronger interfacial interactions, and integrating high-barrier interlayers such as SiC significantly enhance the lateral hermeticity.
在人工图案化的薄膜封装中,存在多个水扩散路径,这阻碍了长期微加工植入物的稳定性。侧向渗透是指分子通过薄结构的侧面渗透,随着高密度和小型化神经电极的发展趋势,其变得越来越关键。然而,目前的渗透率测量方法既不能准确也不能定量地考虑侧向渗透。在此,提出了一种基于镁(Mg)的新型光学方法,以量化通过薄膜封装的侧向水传输速率(SWTR),并使用微米级聚酰亚胺(PI)和聚酰亚胺-碳化硅(PI-SiC)多层膜验证该方法。通过收集用涂有薄封装的腐蚀Mg膜微电池的计算数字灰度图像,对侧向和表面水传输速率进行量化。观察到侧向和表面渗透之间的比率为4.5倍,突出了PI-PI界面在横向扩散中的关键作用。提出了用于设计柔性、密封神经接口的通用指南。增加封装的宽度(电极间距)、建立更强的界面相互作用以及整合诸如SiC等高阻隔中间层可显著提高侧向密封性。