Mariello Massimo, Rosenthal James Daniel, Cecchetti Francesco, Gao Mingxiang, Skrivervik Anja K, Leterrier Yves, Lacour Stéphanie P
Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Commun. 2024 Aug 28;15(1):7443. doi: 10.1038/s41467-024-51247-3.
Long-term bioelectronic implants require stable, hermetic encapsulation. Water and ion ingress are challenging to quantify, especially in miniaturized microsystems and over time. We propose a wireless and battery-free flexible platform leveraging backscatter communication and magnesium (Mg)-based microsensors. Water permeation through the encapsulation induces corrosion of the Mg resistive sensor thereby shifting the oscillation frequency of the sensing circuit. Experimental in vitro and in-tissue characterization provides information on the operation of the platform and demonstrates the robustness and accuracy of this promising method, revealing its significance for in-situ real-time monitoring of implanted bioelectronics.
长期生物电子植入物需要稳定、密封的封装。水和离子的进入难以量化,尤其是在小型微系统中以及随着时间的推移。我们提出了一个利用反向散射通信和基于镁(Mg)的微传感器的无线且无电池的柔性平台。水透过封装会导致Mg电阻传感器腐蚀,从而使传感电路的振荡频率发生偏移。体外和组织内的实验表征提供了关于该平台运行的信息,并证明了这种有前景的方法的稳健性和准确性,揭示了其对植入式生物电子器件原位实时监测的重要性。