Nanbakhsh Kambiz, Van Gompel Matthias, Ritasalo Riina, Gollhardt Astrid, Horváth Domonkos, Tóth Kinga, Meszéna Domokos, Ulbert István, Serdijn Wouter, Giagka Vasiliki
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands.
Comelec SA, La Chaux-de-Fonds, 2301, Switzerland.
Small. 2025 Apr;21(16):e2410141. doi: 10.1002/smll.202410141. Epub 2025 Jan 23.
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used. Microchips are coated with either a ≈100 nm thick inorganic hafnium-based multilayer deposited via atomic layer deposition (ALD-ML), or a ≈6 µm thick hybrid organic-inorganic Parylene C and titanium-based ALD multilayer stack (ParC-ALD-ML). After 7 months of direct exposure to the body environment, the multilayer coatings are evaluated using optical and cross-sectional scanning electron microscopy. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is also used to evaluate the chemical stability and barrier performance of the layers after long-term exposure to body media. Results showed the excellent biostability of the 100 nm ALD-ML coating with no ionic penetration within the layer. For the ParC-ALD-ML, concurrent surface degradation and ion ingress are detected within the top ≈70 nm of the outer Parylene C layer. The results and evaluation techniques presented here can enable future material selection, packaging, and analysis, enhancing the functional stability of future chip-embedded neural implants.
下一代有源神经植入物的小型化需要新颖的微封装解决方案,以维持其在体内的长期涂层性能。这项工作展示了两种薄膜涂层,并通过一项为期7个月的动物研究评估了它们的生物稳定性和体内性能。为了在具有代表性的表面上评估涂层,使用了两种具有不同表面微观形貌的硅微芯片。微芯片分别涂覆有通过原子层沉积(ALD-ML)沉积的约100纳米厚的无机铪基多层膜,或约6微米厚的有机-无机混合聚对二甲苯C和钛基ALD多层堆叠膜(ParC-ALD-ML)。在直接暴露于身体环境7个月后,使用光学和截面扫描电子显微镜对多层涂层进行评估。飞行时间二次离子质谱(ToF-SIMS)也用于评估长期暴露于身体介质后各层的化学稳定性和阻隔性能。结果表明,100纳米的ALD-ML涂层具有出色的生物稳定性,层内无离子渗透。对于ParC-ALD-ML,在外层聚对二甲苯C层顶部约70纳米范围内检测到同时发生的表面降解和离子进入。本文介绍的结果和评估技术能够为未来的材料选择、封装和分析提供支持,提高未来芯片嵌入式神经植入物的功能稳定性。