Suppr超能文献

从动态脑激活模式中解码语义:在 EEG/MEG 源空间中从试验到任务。

Decoding Semantics from Dynamic Brain Activation Patterns: From Trials to Task in EEG/MEG Source Space.

机构信息

MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom

MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.

出版信息

eNeuro. 2024 Mar 4;11(3). doi: 10.1523/ENEURO.0277-23.2023. Print 2024 Mar.

Abstract

The temporal dynamics within the semantic brain network and its dependence on stimulus and task parameters are still not well understood. Here, we addressed this by decoding task as well as stimulus information from source-estimated EEG/MEG human data. We presented the same visual word stimuli in a lexical decision (LD) and three semantic decision (SD) tasks. The meanings of the presented words varied across five semantic categories. Source space decoding was applied over time in five ROIs in the left hemisphere (anterior and posterior temporal lobe, inferior frontal gyrus, primary visual areas, and angular gyrus) and one in the right hemisphere (anterior temporal lobe). Task decoding produced sustained significant effects in all ROIs from 50 to 100 ms, both when categorizing tasks with different semantic demands (LD-SD) as well as for similar semantic tasks (SD-SD). In contrast, a semantic word category could only be decoded in lATL, rATL, PTC, and IFG, between 250 and 500 ms. Furthermore, we compared two approaches to source space decoding: conventional ROI-by-ROI decoding and combined-ROI decoding with back-projected activation patterns. The former produced more reliable results for word category decoding while the latter was more informative for task decoding. This indicates that task effects are distributed across the whole semantic network while stimulus effects are more focal. Our results demonstrate that the semantic network is widely distributed but that bilateral anterior temporal lobes together with control regions are particularly relevant for the processing of semantic information.

摘要

语义大脑网络的时间动态及其对刺激和任务参数的依赖关系仍未得到很好的理解。在这里,我们通过解码源估计 EEG/MEG 人类数据中的任务和刺激信息来解决这个问题。我们在词汇判断 (LD) 和三个语义判断 (SD) 任务中呈现相同的视觉单词刺激。呈现单词的含义在五个语义类别中有所不同。源空间解码在五个左侧半球 ROI(前颞叶和后颞叶、下额回、初级视觉区域和角回)和一个右侧半球 ROI(前颞叶)中随时间进行。任务解码在 50 到 100 毫秒之间在所有 ROI 中产生持续的显著影响,无论是在分类具有不同语义要求的任务 (LD-SD) 还是在相似的语义任务 (SD-SD) 时。相比之下,仅在 lATL、rATL、PTC 和 IFG 中,在 250 到 500 毫秒之间,可以解码语义词类别。此外,我们比较了两种源空间解码方法:传统的 ROI-by-ROI 解码和使用反向投影激活模式的组合-ROI 解码。前者在词类解码中产生更可靠的结果,而后者在任务解码中更具信息量。这表明任务效应分布在整个语义网络中,而刺激效应更集中。我们的结果表明,语义网络分布广泛,但双侧前颞叶以及控制区域对于处理语义信息特别重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0253/10913025/37e92f19c35f/eneuro-11-ENEURO.0277-23.2023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验