Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands.
Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Mozartstraat 201, 1962 AB, Beverwijk, The Netherlands.
Biomech Model Mechanobiol. 2024 Jun;23(3):911-925. doi: 10.1007/s10237-023-01813-3. Epub 2024 Feb 7.
The intact and healthy skin forms a barrier to the outside world and protects the body from mechanical impact. The skin is a complex structure with unique mechano-elastic properties. To better direct the design of biomimetic materials and induce skin regeneration in wounds with optimal outcome, more insight is required in how the mechano-elastic properties emerge from the skin's main constituents, collagen and elastin fibers. Here, we employed two-photon excited autofluorescence and second harmonic generation microscopy to characterize collagen and elastin fibers in 3D in 24 human dermis skin samples. Through uniaxial stretching experiments, we derive uni-directional mechanical properties from resultant stress-strain curves, including the initial Young's modulus, elastic Young's modulus, maximal stress, and maximal and mid-strain values. The stress-strain curves show a large variation, with an average Young's modules in the toe and linear regions of 0.1 MPa and 21 MPa. We performed a comprehensive analysis of the correlation between the key mechanical properties with age and with microstructural parameters, e.g., fiber density, thickness, and orientation. Age was found to correlate negatively with Young's modulus and collagen density. Moreover, real-time monitoring during uniaxial stretching allowed us to observe changes in collagen and elastin alignment. Elastin fibers aligned significantly in both the heel and linear regions, and the collagen bundles engaged and oriented mainly in the linear region. This research advances our understanding of skin biomechanics and yields input for future first principles full modeling of skin tissue.
完整健康的皮肤对外界形成屏障,保护身体免受机械冲击。皮肤是一种具有独特的力-弹性特性的复杂结构。为了更好地指导仿生材料的设计,并在伤口中诱导出具有最佳效果的皮肤再生,我们需要更深入地了解胶原和弹性纤维等皮肤主要成分如何产生力-弹性特性。在这里,我们使用双光子激发自发荧光和二次谐波产生显微镜来对 24 个人体真皮皮肤样本中的胶原和弹性纤维进行三维特征化。通过单轴拉伸实验,我们从所得的应力-应变曲线上得出单向机械性能,包括初始杨氏模量、弹性杨氏模量、最大应力以及最大和中应变值。这些应力-应变曲线显示出很大的变化,在脚趾和线性区域的平均杨氏模量分别为 0.1 MPa 和 21 MPa。我们对关键机械性能与年龄和微观结构参数(例如纤维密度、厚度和取向)之间的相关性进行了全面分析。结果发现年龄与杨氏模量和胶原密度呈负相关。此外,单轴拉伸过程中的实时监测使我们能够观察到胶原和弹性纤维的排列变化。弹性纤维在脚跟和线性区域都显著排列,而胶原束主要在线性区域参与并排列。这项研究推进了我们对皮肤生物力学的理解,并为未来皮肤组织的第一性原理全模型提供了输入。
Biomech Model Mechanobiol. 2024-6
Acta Biomater. 2021-10-15
Biomed Phys Eng Express. 2023-4-25
Adv Healthc Mater. 2014-3
Eur J Obstet Gynecol Reprod Biol. 2009-5
Acta Biomater. 2023-10-15
Biomed Phys Eng Express. 2023-4-25
Opt Lasers Eng. 2022-3
J Mech Behav Biomed Mater. 2020-12
J Mech Behav Biomed Mater. 2020-4