Suppr超能文献

根据运动后血乳酸浓度估算运动中糖酵解贡献的转换因子的计算。

Calculation of a conversion factor for estimating the glycolytic contribution in exercise from post-exercise blood lactate concentration.

作者信息

Hill David W, Mihalek John Michael

机构信息

Applied Physiology Laboratory, University of North Texas, Denton, TX, United States.

College of Applied Human Sciences, West Virginia University, Morgantown, WV, United States.

出版信息

Front Physiol. 2024 Jan 24;14:1283327. doi: 10.3389/fphys.2023.1283327. eCollection 2023.

Abstract

Often, the glycolytic contribution in a bout of heavy or severe intensity exercise is estimated by multiplying the increase in blood lactate concentration above resting levels that is engendered by the exercise (in mM) by 3.3 (or 3) mL·kg per mM. Our purpose was to verify the value of this conversion factor, using methods that were completely different from those of the original studies. Six women (mean ± SD), age, 23 ± 1 year; VO, 46 ± 4 mL·kg·min) and three men (23 ± 0 years; 54 ± 8 mL·kg·min) completed 6 min of heavy intensity exercise in conditions of normoxia and hypoxia (FO, ∼12%). VO was measured throughout the exercise and 7 min of recovery. The increase in glycolytic contribution was estimated as the reduction in aerobic contribution in hypoxia, after correction for the effects of hypoxia on the oxygen demand and on the contribution from phosphocreatine. The peak post-exercise blood lactate concentration was measured in fingerstick blood samples. The ratio between the increase in estimated glycolytic contribution (in mL·kg) in hypoxia and the increase in peak blood lactate concentration (in mM) yielded an oxygen equivalent of 3.4 ± 0.4 mL·kg per mM (range, 2.6 mL·kg per mM to 4.0 mL·kg1 per mM) for cycle ergometer exercise. These results generally support the use of a common conversion factor to calculate the glycolytic contribution from post-exercise blood lactate concentrations. However, there is some inter-individual variability in the conversion factor.

摘要

通常,剧烈或高强度运动中糖酵解的贡献是通过将运动引起的血液乳酸浓度高于静息水平的增加值(以毫摩尔为单位)乘以3.3(或3)毫升·千克/毫摩尔来估算的。我们的目的是使用与原始研究完全不同的方法来验证这个转换因子的值。六名女性(平均±标准差,年龄23±1岁;最大摄氧量46±4毫升·千克·分钟)和三名男性(23±0岁;54±8毫升·千克·分钟)在常氧和低氧(氧含量约12%)条件下完成了6分钟的高强度运动。在整个运动过程以及恢复的7分钟内测量最大摄氧量。在纠正低氧对氧需求和磷酸肌酸贡献的影响后,将低氧状态下有氧贡献的减少量估计为糖酵解贡献的增加量。通过手指采血样测量运动后血乳酸浓度峰值。低氧状态下估计的糖酵解贡献增加量(以毫升·千克为单位)与血乳酸浓度峰值增加量(以毫摩尔为单位)的比值得出,对于蹬车运动,氧当量为3.4±0.4毫升·千克/毫摩尔(范围为2.6毫升·千克/毫摩尔至4.0毫升·千克/毫摩尔)。这些结果总体上支持使用一个通用的转换因子来根据运动后血乳酸浓度计算糖酵解贡献。然而,转换因子存在一定的个体间差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede5/10847225/f64be7a08500/fphys-14-1283327-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验