Suppr超能文献

在未选择队列中根据心音预测瓣膜性心脏病的算法

Algorithm for predicting valvular heart disease from heart sounds in an unselected cohort.

作者信息

Waaler Per Niklas, Melbye Hasse, Schirmer Henrik, Johnsen Markus Kreutzer, Donnem Tom, Ravn Johan, Andersen Stian, Davidsen Anne Herefoss, Aviles Solis Juan Carlos, Stylidis Michael, Bongo Lars Ailo

机构信息

Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.

General Practice Research Unit, Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.

出版信息

Front Cardiovasc Med. 2024 Jan 24;10:1170804. doi: 10.3389/fcvm.2023.1170804. eCollection 2023.

Abstract

OBJECTIVE

This study aims to assess the ability of state-of-the-art machine learning algorithms to detect valvular heart disease (VHD) from digital heart sound recordings in a general population that includes asymptomatic cases and intermediate stages of disease progression.

METHODS

We trained a recurrent neural network to predict murmurs from heart sound audio using annotated recordings collected with digital stethoscopes from four auscultation positions in 2,124 participants from the Tromsø7 study. The predicted murmurs were used to predict VHD as determined by echocardiography.

RESULTS

The presence of aortic stenosis (AS) was detected with a sensitivity of 90.9%, a specificity of 94.5%, and an area under the curve (AUC) of 0.979 (CI: 0.963-0.995). At least moderate AS was detected with an AUC of 0.993 (CI: 0.989-0.997). Moderate or greater aortic and mitral regurgitation (AR and MR) were predicted with AUC values of 0.634 (CI: 0.565-703) and 0.549 (CI: 0.506-0.593), respectively, which increased to 0.766 and 0.677 when clinical variables were added as predictors. The AUC for predicting symptomatic cases was higher for AR and MR, 0.756 and 0.711, respectively. Screening jointly for symptomatic regurgitation or presence of stenosis resulted in an AUC of 0.86, with 97.7% of AS cases ( = 44) and all 12 MS cases detected.

CONCLUSIONS

The algorithm demonstrated excellent performance in detecting AS in a general cohort, surpassing observations from similar studies on selected cohorts. The detection of AR and MR based on HS audio was poor, but accuracy was considerably higher for symptomatic cases, and the inclusion of clinical variables improved the performance of the model significantly.

摘要

目的

本研究旨在评估最先进的机器学习算法从一般人群的数字心音记录中检测瓣膜性心脏病(VHD)的能力,该人群包括无症状病例和疾病进展的中间阶段。

方法

我们使用来自特罗姆瑟7研究的2124名参与者从四个听诊位置用数字听诊器收集的带注释记录,训练了一个循环神经网络,以从心音音频中预测杂音。预测的杂音用于预测经超声心动图确定的VHD。

结果

检测到主动脉瓣狭窄(AS)的存在,灵敏度为90.9%,特异性为94.5%,曲线下面积(AUC)为0.979(CI:0.963 - 0.995)。检测到至少中度AS的AUC为0.993(CI:0.989 - 0.997)。预测中度或更严重的主动脉瓣反流和二尖瓣反流(AR和MR)的AUC值分别为0.634(CI:0.565 - 0.703)和0.549(CI:0.506 - 0.593),当将临床变量作为预测因子添加时,分别增加到0.766和0.677。预测有症状病例的AR和MR的AUC更高,分别为0.756和0.711。联合筛查有症状的反流或狭窄的存在,AUC为0.86,检测到97.7%的AS病例(n = 44)和所有12例MS病例。

结论

该算法在一般队列中检测AS方面表现出优异的性能,超过了对选定队列的类似研究的观察结果。基于心音音频检测AR和MR的效果较差,但对有症状病例的准确性要高得多,并且纳入临床变量显著提高了模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4224/10847556/b14c5e67df40/fcvm-10-1170804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验