Suppr超能文献

Machine learning in electron beam lithography to boost photoresist formulation design for high-resolution patterning.

作者信息

Zhao Rongbo, Wang Xiaolin, Xu Hong, Wei Yayi, He Xiangming

机构信息

Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.

Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China.

出版信息

Nanoscale. 2024 Feb 22;16(8):4212-4218. doi: 10.1039/d3nr04819e.

Abstract

The reduction of the critical dimension (CD) usually improves the resolution of patterns and performance of chips. In chip manufacturing, electron beam lithography (EBL) is a promising technology for preparing sub-10 nm patterns, and its imaging resolution is primarily determined by the photoresist formulation. However, the smaller CDs are mainly achieved by optimizing process conditions, and little attention has been paid to the photoresist formulation optimization. Screening suitable photoresist formulations remains a significant challenge due to the considerable time and high cost. Herein, we report a formulation optimization technique of a metal oxide nanoparticle photoresist that combines EBL experiments with a machine learning long short-term memory (LSTM) network. Using the LSTM network, a CD photoresist evaluation model is established. Leveraging the CD model, a photoresist formulation optimizer is developed with a line width of 26 nm. The verification results demonstrate that the CDs predicted by the LSTM network are basically consistent with the EBL experimental results, and the photoresist formulations that meet the CD requirements can be screened. This work opens up a novel perspective to boost photoresist formulation design for high-resolution patterning with artificial intelligence and provides guidance for EBL experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验