Suppr超能文献

空穴注入势垒对蓝色量子点发光二极管退化的影响

Hole-Injection-Barrier Effect on the Degradation of Blue Quantum-Dot Light-Emitting Diodes.

作者信息

Sun Xiaojuan, Chen Xingtong, Li Xinrui, Xie Jiachen, Lin Xiongfeng, Shen Qi, Wu Longjia, Chen Song

机构信息

Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

TCL Corporate Research, 1001 Zhongshan Park Road, Nanshan District, Shenzhen 518067, Guangdong, China.

出版信息

ACS Nano. 2024 Feb 8. doi: 10.1021/acsnano.3c12840.

Abstract

Inefficient hole injection presents a major challenge in achieving stable and commercially viable solution-processed blue electroluminescent devices. Here, we conduct an in-depth study on quantum-dot light-emitting diodes (QLEDs) to understand how the energy levels of common electrodes and hole-transporting layers (HTL) affect device degradation. Our experimental findings reveal a design rule that may seem nonintuitive: combining an electrode and HTL with matched energy levels is most effective in preventing voltage rise and irreversible luminance decay, even though it causes a significant energy offset between the HTL and emissive quantum dots. Using an iterative electrostatic model, we discover that the positive outcomes, including a lifetime of 109 h (luminance = 1000 nits, CIE-y = 0.087), are due to the enhanced p-type doping in the HTL rather than the assumed reduction in barrier heights. Furthermore, our modified hole injection dynamics theory, which considers distributed density-of-states, shows that the increased HTL/quantum-dot energy offset is not a primary concern because the effective barrier height is significantly lower than conventionally assumed. Following this design rule, we expect device stability to be enhanced considerably.

摘要

在实现稳定且具有商业可行性的溶液处理蓝色电致发光器件方面,低效的空穴注入是一个重大挑战。在此,我们对量子点发光二极管(QLED)进行了深入研究,以了解常见电极和空穴传输层(HTL)的能级如何影响器件退化。我们的实验结果揭示了一条看似不符合直觉的设计规则:将具有匹配能级的电极和HTL组合起来,在防止电压上升和不可逆的亮度衰减方面最为有效,尽管这会在HTL和发射量子点之间造成显著的能量偏移。使用迭代静电模型,我们发现包括109小时寿命(亮度 = 1000尼特,CIE - y = 0.087)在内的积极结果,是由于HTL中p型掺杂增强,而非所假设的势垒高度降低。此外,我们改进的考虑态密度分布的空穴注入动力学理论表明,增加的HTL/量子点能量偏移并非主要问题,因为有效势垒高度明显低于传统假设。遵循这一设计规则,我们预计器件稳定性将得到显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验