Zhu Xitong, Luo Xiao, Deng Yunzhou, Wei Huan, Ying Lei, Huang Fei, Hu Yuanyuan, Jin Yizheng
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Sci Adv. 2024 Aug 16;10(33):eado0614. doi: 10.1126/sciadv.ado0614.
Quantum-dot light-emitting diodes (QLEDs) are solution-processed electroluminescence devices with great potential as energy-saving, large-area, and low-cost display and lighting technologies. Ideally, the organic hole-transport layers (HTLs) in QLEDs should simultaneously deliver efficient hole injection and transport, effective electron blocking, and robust electrochemical stability. However, it is still challenging for a single HTL to fulfill all these stringent criteria. Here, we demonstrate a general design of doping-bilayer polymer-HTL architecture for stabilizing high-efficiency QLEDs. We show that the bilayer HTLs combining the electrochemical-stable polymer and the electron-blocking polymer unexpectedly increase the hole injection barrier. We mitigated the problem by p-doping of the underlying sublayer of the bilayer HTLs. Consequently, green QLEDs with an unprecedented maximum luminance of 1,340,000 cd m and a record-long operational lifetime ( lifetime at an initial luminance of 1000 cd m is 17,700 hours) were achieved. The universality of the strategy is examined in various polymer-HTL systems, providing a general route toward high-performance solution-processed QLEDs.
量子点发光二极管(QLED)是通过溶液处理的电致发光器件,作为节能、大面积和低成本的显示及照明技术具有巨大潜力。理想情况下,QLED中的有机空穴传输层(HTL)应同时实现高效的空穴注入和传输、有效的电子阻挡以及强大的电化学稳定性。然而,对于单一的HTL而言,要满足所有这些严格的标准仍然具有挑战性。在此,我们展示了一种用于稳定高效QLED的掺杂双层聚合物-HTL结构的通用设计。我们表明,将电化学稳定聚合物和电子阻挡聚合物相结合的双层HTL意外地增加了空穴注入势垒。我们通过对双层HTL的底层子层进行p掺杂来缓解这一问题。结果,实现了具有前所未有的1340000 cd/m²最大亮度以及创纪录的长工作寿命(初始亮度为1000 cd/m²时的寿命为17700小时)的绿色QLED。该策略的通用性在各种聚合物-HTL系统中得到了检验,为高性能溶液处理QLED提供了一条通用途径。