Suppr超能文献

骨骼肌在脂肪酸氧化缺陷的情况下发生纤维类型代谢转换,而不发生肌球蛋白重链转换。

Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation.

机构信息

Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.

Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.

出版信息

Mol Metab. 2022 May;59:101456. doi: 10.1016/j.molmet.2022.101456. Epub 2022 Feb 9.

Abstract

OBJECTIVE

Skeletal muscle is a heterogeneous and dynamic tissue that adapts to functional demands and substrate availability by modulating muscle fiber size and type. The concept of muscle fiber type relates to its contractile (slow or fast) and metabolic (glycolytic or oxidative) properties. Here, we tested whether disruptions in muscle oxidative catabolism are sufficient to prompt parallel adaptations in energetics and contractile protein composition.

METHODS

Mice with defective mitochondrial long-chain fatty acid oxidation (mLCFAO) in the skeletal muscle due to loss of carnitine palmitoyltransferase 2 (Cpt2) were used to model a shift in muscle macronutrient catabolism. Glycolytic and oxidative muscles of Cpt2 mice and control littermates were compared for the expression of energy metabolism-related proteins, mitochondrial respiratory capacity, and myosin heavy chain isoform composition.

RESULTS

Differences in bioenergetics and macronutrient utilization in response to energy demands between control muscles were intrinsic to the mitochondria, allowing for a clear distinction of muscle types. Loss of CPT2 ablated mLCFAO and resulted in mitochondrial biogenesis occurring most predominantly in oxidative muscle fibers. The metabolism-related proteomic signature of Cpt2 oxidative muscle more closely resembled that of glycolytic muscle than of control oxidative muscle. Respectively, intrinsic substrate-supported mitochondrial respiration of CPT2 deficient oxidative muscles shifted to closely match that of glycolytic muscles. Despite this shift in mitochondrial metabolism, CPT2 deletion did not result in contractile-based fiber type switching according to myosin heavy chain composition analysis.

CONCLUSION

The loss of mitochondrial long-chain fatty acid oxidation elicits an adaptive response involving conversion of oxidative muscle toward a metabolic profile that resembles a glycolytic muscle, but this is not accompanied by changes in myosin heavy chain isoforms. These data suggest that shifts in muscle catabolism are not sufficient to drive shifts in the contractile apparatus but are sufficient to drive adaptive changes in metabolic properties.

摘要

目的

骨骼肌是一种异质和动态的组织,通过调节肌纤维大小和类型来适应功能需求和底物可用性。肌纤维类型的概念与它的收缩(慢或快)和代谢(糖酵解或氧化)特性有关。在这里,我们测试了肌肉氧化分解代谢的破坏是否足以促使能量和收缩蛋白组成的平行适应。

方法

由于肉碱棕榈酰转移酶 2 (Cpt2) 的缺失,骨骼肌中线粒体长链脂肪酸氧化 (mLCFAO) 受损的小鼠被用来模拟肌肉中大分子营养物质分解代谢的转变。比较 Cpt2 小鼠和对照同窝仔鼠的糖酵解和氧化肌肉的能量代谢相关蛋白表达、线粒体呼吸能力和肌球蛋白重链同工型组成。

结果

对控制肌肉的能量需求的生物能学和大分子利用的差异是内在的线粒体,允许清楚地区分肌肉类型。CPT2 的缺失消除了 mLCFAO,并导致线粒体生物发生主要发生在氧化肌纤维中。Cpt2 氧化肌的代谢相关蛋白质组学特征更接近糖酵解肌,而不是对照氧化肌。相应地,CPT2 缺乏的氧化肌的内在底物支持的线粒体呼吸向糖酵解肌的呼吸更接近。尽管线粒体代谢发生了这种转变,但 CPT2 的缺失并没有导致肌球蛋白重链组成分析的收缩型纤维类型转换。

结论

失去线粒体长链脂肪酸氧化会引起适应性反应,涉及将氧化肌肉转化为代谢特征,类似于糖酵解肌肉,但这不会伴随着肌球蛋白重链同工型的变化。这些数据表明,肌肉分解代谢的转变不足以驱动收缩装置的转变,但足以驱动代谢特性的适应性变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7f8/8898976/80743ff8d39b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验