Lieber Institute for Brain Development, Baltimore, MD, USA.
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Sci Rep. 2024 Feb 8;14(1):3291. doi: 10.1038/s41598-024-53381-w.
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
原发性人滋养层干细胞 (TSC) 和源自人类多能干细胞 (hPSC) 的 TSC 可在体外潜在地模拟胎盘过程。然而,hPSC 向 TSC 分化过程中的多能状态和涉及的因素仍知之甚少。在这项研究中,我们证明了初始多能状态可以通过激活表皮生长因子 (EGF) 和 Wnt 相关整合位点 (WNT) 等途径,以及抑制肿瘤生长因子 β (TGFβ)、组蛋白去乙酰化酶 (HDAC) 和 Rho 相关蛋白激酶 (ROCK) 信号通路来产生 TSC,所有这些都无需添加外源性骨形态发生蛋白 4 (BMP4)-我们称之为 TS 条件。我们使用时间单细胞 RNA 测序来描述这个过程,将 TS 条件与涉及 BMP4 激活的分化方案进行比较,或者将 BMP4 激活与 WNT 抑制结合使用。TS 条件始终产生一种稳定的、增殖的细胞类型,这种细胞类型非常类似于第一孕期胎盘细胞滋养层,其特征是内源性逆转录病毒基因的激活和羊膜表达的缺失。这在多个细胞系中都得到了观察,包括各种初始诱导多能干细胞 (iPSC) 和胚胎干细胞 (ESC) 系。初始衍生的 TSC 可以增殖超过 30 代,并进一步特化成为多核合胞滋养细胞和绒毛外滋养细胞。我们的研究表明,在 TS 条件下,初始 hPSC 向 TSC 的分化会触发 TMSB4X、BMP5/7、GATA3 和 TFAP2A 的诱导,而不会经历原始状态。这些发现表明初始 hPSC 状态是多潜能性的连续体的一部分,具有通过多种途径分化为 TSC 的能力。