Weikert Thomas, Francone Marco, Abbara Suhny, Baessler Bettina, Choi Byoung Wook, Gutberlet Matthias, Hecht Elizabeth M, Loewe Christian, Mousseaux Elie, Natale Luigi, Nikolaou Konstantin, Ordovas Karen G, Peebles Charles, Prieto Claudia, Salgado Rodrigo, Velthuis Birgitta, Vliegenthart Rozemarijn, Bremerich Jens, Leiner Tim
Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, V.le Regina Elena 324, 00161, Rome, Italy.
Eur Radiol. 2021 Jun;31(6):3909-3922. doi: 10.1007/s00330-020-07417-0. Epub 2020 Nov 19.
Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. KEY POINTS: • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms.
从心脏成像专家、患者以及行业的角度来看,机器学习为简化和改善临床护理提供了巨大机遇,并且是一个非常活跃的科研领域。鉴于这些进展,致力于推进心血管放射学发展的非营利性医学协会——欧洲心血管放射学会(ESCR),已就机器学习(ML)在心血管成像中的应用汇编了一份立场声明。本声明的目的是为心血管成像中ML应用的成功开发和实施所需的要求提供指导。特别是,提供了关于如何充分设计ML研究以及如何报告和解释其结果的建议。最后,我们确定了未来的机遇和挑战。虽然本立场声明的重点是心血管成像中的ML开发,但大多数考量因素总体上与放射学中的ML相关。要点:• 心血管成像中机器学习的开发和临床应用是一项多学科的工作。• 基于诸如SPIRIT和STARD等现有的研究质量标准框架,我们提出了放射学中ML研究的质量标准清单。• 心血管成像研究团体应努力编制多中心数据集,用于ML算法的开发、评估和基准测试。