文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

α-银纳米颗粒-麦芽糊精递送系统的设计与评估:抗氧化、抗菌、乙酰胆碱酯酶抑制及细胞毒性潜力

Design and Evaluation of a -AgNP-Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential.

作者信息

Stanoiu Ana-Maria, Bejenaru Cornelia, Segneanu Adina-Elena, Vlase Gabriela, Bradu Ionela Amalia, Vlase Titus, Mogoşanu George Dan, Ciocîlteu Maria Viorica, Biţă Andrei, Kostici Roxana, Herea Dumitru-Daniel, Bejenaru Ludovic Everard

机构信息

Department of Surgery, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania.

Drug Research Center, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania.

出版信息

Polymers (Basel). 2025 Aug 7;17(15):2163. doi: 10.3390/polym17152163.


DOI:10.3390/polym17152163
PMID:40808211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349574/
Abstract

, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of , introducing novel polymer-based encapsulation systems to enhance the stability and bioavailability of its bioactive constituents. Two distinct delivery systems were designed to enhance the functionality of extracts: (i) microencapsulation in maltodextrin (MIO) and (ii) a sequential approach involving preparation of silver nanoparticle-loaded (IO-AgNPs), followed by microencapsulation to yield the hybrid MIO-AgNP system. Comprehensive metabolite profiling using GC-MS and ESI-QTOF-MS revealed 142 bioactive constituents, including terpenoids, flavonoids, phenolic acids, amino acids, coumarins, styrylpyrones, fatty acids, and phytosterols. Structural integrity and successful encapsulation were confirmed by XRD, FTIR, and SEM analyses. Both IO-AgNPs and MIO-AgNPs demonstrated potent antioxidant activity, significant acetylcholinesterase inhibition, and robust antimicrobial effects against , , , and . Cytotoxicity assays revealed pronounced activity against MCF-7, HCT116, and HeLa cell lines, with MIO-AgNPs exhibiting superior efficacy. The synergistic integration of maltodextrin and AgNPs enhanced compound stability and bioactivity. As the first report on Romanian , this study highlights its therapeutic potential and establishes polymer-based nanoencapsulation as an effective strategy for optimizing its applications in combating microbial resistance and cancer.

摘要

一种因其生物活性化合物而备受重视的药用蘑菇,此前尚未从罗马尼亚的来源进行过特征描述。本研究首次对其进行了全面的化学和生物学筛选,引入了新型的基于聚合物的封装系统,以提高其生物活性成分的稳定性和生物利用度。设计了两种不同的递送系统来增强提取物的功能:(i)在麦芽糊精中进行微胶囊化(MIO),以及(ii)一种顺序方法,包括制备负载银纳米颗粒的(IO-AgNPs),然后进行微胶囊化以产生混合的MIO-AgNP系统。使用GC-MS和ESI-QTOF-MS进行的综合代谢物谱分析揭示了142种生物活性成分,包括萜类、黄酮类、酚酸、氨基酸、香豆素、苯乙烯基吡喃酮、脂肪酸和植物甾醇。通过XRD、FTIR和SEM分析证实了结构完整性和成功封装。IO-AgNPs和MIO-AgNPs均表现出强大的抗氧化活性、显著的乙酰胆碱酯酶抑制作用以及对、、和的强大抗菌作用。细胞毒性试验显示对MCF-7、HCT116和HeLa细胞系有明显活性,其中MIO-AgNPs表现出更高的疗效。麦芽糊精和AgNPs的协同整合增强了化合物的稳定性和生物活性。作为关于罗马尼亚的首次报告,本研究突出了其治疗潜力,并确立了基于聚合物的纳米封装作为优化其在对抗微生物耐药性和癌症方面应用的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/b9a977ccc1c2/polymers-17-02163-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/45edcaf06a74/polymers-17-02163-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/d2fd342a9771/polymers-17-02163-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f181d8a48f8c/polymers-17-02163-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/ec29c5751f37/polymers-17-02163-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/4961e72bad43/polymers-17-02163-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/44d1de628a2c/polymers-17-02163-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/9828d20f35a5/polymers-17-02163-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/d13b25144e37/polymers-17-02163-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f139193cff0f/polymers-17-02163-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f1a5620fd130/polymers-17-02163-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/bf161a6563ad/polymers-17-02163-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/a74b4d6ae85c/polymers-17-02163-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/fc0ccd6a63b8/polymers-17-02163-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/b9a977ccc1c2/polymers-17-02163-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/45edcaf06a74/polymers-17-02163-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/d2fd342a9771/polymers-17-02163-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f181d8a48f8c/polymers-17-02163-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/ec29c5751f37/polymers-17-02163-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/4961e72bad43/polymers-17-02163-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/44d1de628a2c/polymers-17-02163-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/9828d20f35a5/polymers-17-02163-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/d13b25144e37/polymers-17-02163-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f139193cff0f/polymers-17-02163-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/f1a5620fd130/polymers-17-02163-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/bf161a6563ad/polymers-17-02163-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/a74b4d6ae85c/polymers-17-02163-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/fc0ccd6a63b8/polymers-17-02163-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2b/12349574/b9a977ccc1c2/polymers-17-02163-g014.jpg

相似文献

[1]
Design and Evaluation of a -AgNP-Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential.

Polymers (Basel). 2025-8-7

[2]
Design and Evaluation of a -Kaolinite-Maltodextrin Delivery System: Antioxidant, Antimicrobial, and Cytotoxic Activity Assessment.

Pharmaceutics. 2025-6-6

[3]
Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties.

PLoS One. 2025-6-30

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
Structural insights and biomedical potential of biosynthesized silver nanoparticles: antibacterial activity, anti-biofilm and cancer cell inhibition.

PeerJ. 2025-7-1

[6]
Photoregulation of the biosynthetic activity of fungus using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.

Bioengineered. 2025-12

[7]
Eco-friendly silver nanoparticles from garlic: a novel therapeutic approach for treating wound infections.

Front Cell Infect Microbiol. 2025-6-30

[8]
Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells.

Sci Rep. 2025-7-15

[9]
Evaluation of the antibacterial and antibiofilm effect of mycosynthesized silver and selenium nanoparticles and their synergistic effect with antibiotics on nosocomial bacteria.

Microb Cell Fact. 2025-1-4

[10]
A systematic review on natural products with antimicrobial potential against WHO's priority pathogens.

Eur J Med Res. 2025-7-1

本文引用的文献

[1]
Design and Evaluation of a -Kaolinite-Maltodextrin Delivery System: Antioxidant, Antimicrobial, and Cytotoxic Activity Assessment.

Pharmaceutics. 2025-6-6

[2]
Wild grown Portulaca oleracea as a novel magnetite based carrier with in vitro antioxidant and cytotoxicity potential.

Sci Rep. 2025-3-13

[3]
Wild-Grown Romanian : Advancing Phyto-Nanocarriers via Maltodextrin Micro-Spray Encapsulation-Metabolite Profiling, Antioxidant, Antimicrobial, and Cytotoxicity Insights.

Polymers (Basel). 2025-2-12

[4]
Chaga Mushroom Triterpenoids Inhibit Dihydrofolate Reductase and Act Synergistically with Conventional Therapies in Breast Cancer.

Biomolecules. 2024-11-17

[5]
The Expanding Burden of Neurodegenerative Diseases: An Unmet Medical and Social Need.

Aging Dis. 2024-11-9

[6]
Metabolite Profiling of Annual Ryegrass Cultivars to Assess Disease Resistance and Susceptibility.

J Agric Food Chem. 2024-11-13

[7]
Polyphenols Investigation and Antioxidant and Anticholinesterase Activities of L. Species from Southwest Romania Flora.

Molecules. 2024-9-18

[8]
Insight into Romanian Wild-Grown : Development of a New Phytocarrier Based on Silver Nanoparticles with Antioxidant, Antimicrobial and Cytotoxicity Potential.

Antibiotics (Basel). 2024-9-23

[9]
Polyphenols in health and food processing: antibacterial, anti-inflammatory, and antioxidant insights.

Front Nutr. 2024-8-19

[10]
Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga () Growing on and .

Pharmaceuticals (Basel). 2024-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索