The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Australia.
Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
J Virol. 2024 Mar 19;98(3):e0180223. doi: 10.1128/jvi.01802-23. Epub 2024 Feb 9.
With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic.
Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.
由于住院 COVID-19 患者中急性肾损伤的发病率较高,人们相当关注 SARS-CoV-2 是否专门针对肾细胞,直接影响肾功能,还是肾损伤主要是间接结果。迄今为止,已有几项研究利用肾类器官来了解 COVID-19 的发病机制,揭示了 SARS-CoV-2 主要感染近端小管(PT)细胞的能力,而在用可溶性 ACE2 处理后感染性降低。然而,标准人肾类器官的不成熟是一个重大障碍,使得 SARS-CoV-2 的首选加工途径、替代病毒受体的存在以及常见高血压药物对 ACE2 在 SARS-CoV-2 暴露背景下表达的影响都不完全清楚。利用具有增强 PT 成熟度的新型肾类器官模型,遗传和药物抑制病毒进入和加工因子证实了 ACE2 是 SARS-CoV-2 进入的必需条件,但表明病毒可以利用 ACE2 受体结合后的双重病毒刺突蛋白加工途径。这些途径包括 TMPRSS- 和 CTSL/CTSB 介导的非内体和内吞途径,其中 TMPRSS10 在肾细胞中的非内体途径中可能比 TMPRSS2 发挥更重要的作用。最后,用抗高血压 ACE 抑制剂赖诺普利治疗显示对受体表达或肾细胞感染易感性的影响可忽略不计。这项研究代表了首次对增强的 PT 干细胞衍生的人类肾类器官中病毒进入的深入特征描述,为深入了解当前 COVID-19 大流行的肾脏影响提供了更深入的认识。
利用具有改进的近端小管(PT)成熟度的人 iPSC 衍生肾类器官模型,我们确定了 SARS-CoV-2 在肾细胞中的进入机制,证实 ACE2 是唯一的受体,并揭示了下游细胞表面 TMPRSS-和内吞 Cathepsin 介导途径的冗余性。此外,这些数据解决了在通常开处方的 ACE 抑制剂赖诺普利的情况下 SARS-CoV-2 暴露的影响,证实其对肾细胞感染的影响可忽略不计。总而言之,这些结果为病毒感染人类肾脏的机制提供了有价值的见解。