基于水凝胶纳米复合材料的低功耗环保型温度传感器的再生与长期稳定性
Regeneration and Long-Term Stability of a Low-Power Eco-Friendly Temperature Sensor Based on a Hydrogel Nanocomposite.
作者信息
Landi Giovanni, Pagano Sergio, Granata Veronica, Avallone Guerino, La Notte Luca, Palma Alessandro Lorenzo, Sdringola Paolo, Puglisi Giovanni, Barone Carlo
机构信息
ENEA, Portici Research Center, Piazzale Enrico Fermi, Località Granatello, 80055 Portici, Italy.
Dipartimento di Fisica "E.R. Caianiello", Università degli Studi di Salerno, 84084 Fisciano, Italy.
出版信息
Nanomaterials (Basel). 2024 Jan 30;14(3):283. doi: 10.3390/nano14030283.
A water-processable and low-cost nanocomposite material, based on gelatin and graphene, has been used to fabricate an environmentally friendly temperature sensor. Demonstrating a temperature-dependent open-circuit voltage between 260 and 310 K, the sensor effectively detects subzero ice formation. Notably, it maintains a constant temperature sensitivity of approximately -19 mV/K over two years, showcasing long-term stability. Experimental evidence demonstrates the efficient regeneration of aged sensors by injecting a few drops of water at a temperature higher than the gelation point of the hydrogel nanocomposite. The real-time monitoring of the electrical characteristics during the hydration reveals the initiation of the regeneration process at the gelation point (~306 K), resulting in a more conductive nanocomposite. These findings, together with a fast response and low power consumption in the range of microwatts, underscore the potential of the eco-friendly sensor for diverse practical applications in temperature monitoring and environmental sensing. Furthermore, the successful regeneration process significantly enhances its sustainability and reusability, making a valuable contribution to environmentally conscious technologies.
一种基于明胶和石墨烯的可水加工且低成本的纳米复合材料已被用于制造一种环保型温度传感器。该传感器在260至310 K之间呈现出与温度相关的开路电压,能有效检测零下结冰情况。值得注意的是,它在两年内保持约-19 mV/K的恒定温度灵敏度,展现出长期稳定性。实验证据表明,通过在高于水凝胶纳米复合材料凝胶化点的温度下注入几滴 水,老化的传感器可有效再生。水合过程中对电学特性的实时监测揭示了在凝胶化点(约306 K)再生过程的启动,从而产生导电性更强的纳米复合材料。这些发现,再加上在微瓦范围内的快速响应和低功耗,凸显了这种环保型传感器在温度监测和环境传感等多种实际应用中的潜力。此外,成功的再生过程显著提高了其可持续性和可重复使用性,为注重环保的技术做出了宝贵贡献。