Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Materials Science and Engineering Department, University of California, Irvine, CA 94550, USA.
Science. 2023 Jun 2;380(6648):960-966. doi: 10.1126/science.abq3037. Epub 2023 Jun 1.
Three-dimensional (3D) printing of silica glass is dominated by techniques that rely on traditional particle sintering. At the nanoscale, this limits their adoption within microsystem technology, which prevents technological breakthroughs. We introduce the sinterless, two-photon polymerization 3D printing of free-form fused silica nanostructures from a polyhedral oligomeric silsesquioxane (POSS) resin. Contrary to particle-loaded sacrificial binders, our POSS resin itself constitutes a continuous silicon-oxygen molecular network that forms transparent fused silica at only 650°C. This temperature is 500°C lower than the sintering temperatures for fusing discrete silica particles to a continuum, which brings silica 3D printing below the melting points of essential microsystem materials. Simultaneously, we achieve a fourfold resolution enhancement, which enables visible light nanophotonics. By demonstrating excellent optical quality, mechanical resilience, ease of processing, and coverable size scale, our material sets a benchmark for micro- and nano-3D printing of inorganic solids.
三维(3D)打印二氧化硅玻璃主要依赖于依赖传统颗粒烧结的技术。在纳米尺度上,这限制了它们在微系统技术中的应用,从而阻碍了技术突破。我们介绍了一种无烧结的、双光子聚合 3D 打印技术,可从多面体低聚倍半硅氧烷(POSS)树脂中打印自由形态的熔融二氧化硅纳米结构。与负载颗粒的牺牲性粘结剂不同,我们的 POSS 树脂本身构成了一个连续的硅-氧分子网络,仅在 650°C 下就形成了透明的熔融二氧化硅。这一温度比将离散的二氧化硅颗粒熔合到连续体所需的烧结温度低 500°C,从而使二氧化硅 3D 打印技术低于重要微系统材料的熔点。同时,我们实现了四倍的分辨率增强,从而实现了可见光纳米光子学。通过展示优异的光学质量、机械弹性、易于加工和可覆盖的尺寸范围,我们的材料为无机固体的微纳 3D 打印设定了基准。