Suppr超能文献

基于物理信息的深度神经网络的 4D-Flow MRI 超分辨率和去噪。

Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets.

机构信息

Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

Dept. of Electrical and Computer Engineering, New York Institute of Technology, Long Island, NY, USA.

出版信息

Comput Methods Programs Biomed. 2020 Dec;197:105729. doi: 10.1016/j.cmpb.2020.105729. Epub 2020 Sep 15.

Abstract

BACKGROUND AND OBJECTIVE

Time resolved three-dimensional phase contrast magnetic resonance imaging (4D-Flow MRI) has been used to non-invasively measure blood velocities in the human vascular system. However, issues such as low spatio-temporal resolution, acquisition noise, velocity aliasing, and phase-offset artifacts have hampered its clinical application. In this research, we developed a purely data-driven method for super-resolution and denoising of 4D-Flow MRI.

METHODS

The flow velocities, pressure, and the MRI image magnitude are modeled as a patient-specific deep neural net (DNN). For training, 4D-Flow MRI images in the complex Cartesian space are used to impose data-fidelity. Physics of fluid flow is imposed through regularization. Creative loss function terms have been introduced to handle noise and super-resolution. The trained patient-specific DNN can be sampled to generate noise-free high-resolution flow images. The proposed method has been implemented using the TensorFlow DNN library and tested on numerical phantoms and validated in-vitro using high-resolution particle image velocitmetry (PIV) and 4D-Flow MRI experiments on transparent models subjected to pulsatile flow conditions.

RESULTS

In case of numerical phantoms, we were able to increase spatial resolution by a factor of 100 and temporal resolution by a factor of 5 compared to the simulated 4D-Flow MRI. There is an order of magnitude reduction of velocity normalized root mean square error (vNRMSE). In case of the in-vitro validation tests with PIV as reference, there is similar improvement in spatio-temporal resolution. Although the vNRMSE is reduced by 50%, the method is unable to negate a systematic bias with respect to the reference PIV that is introduced by the 4D-Flow MRI measurement.

CONCLUSIONS

This work has demonstrated the feasibility of using the readily available machinery of deep learning to enhance 4D-Flow MRI using a purely data-driven method. Unlike current state-of-the-art methods, the proposed method is agnostic to geometry and boundary conditions and therefore eliminates the need for tedious tasks such as accurate image segmentation for geometry, image registration, and estimation of boundary flow conditions. Arbitrary regions of interest can be selected for processing. This work will lead to user-friendly analysis tools that will enable quantitative hemodynamic analysis of vascular diseases in a clinical setting.

摘要

背景与目的

时分辨三维相位对比磁共振成像(4D-Flow MRI)已被用于无创测量人体血管系统中的血流速度。然而,低时空分辨率、采集噪声、速度混淆和相位偏移伪影等问题限制了其临床应用。在本研究中,我们开发了一种用于 4D-Flow MRI 超分辨率和去噪的纯数据驱动方法。

方法

将血流速度、压力和 MRI 图像幅度建模为患者特定的深度神经网络(DNN)。在训练过程中,使用复杂笛卡尔空间中的 4D-Flow MRI 图像来施加数据保真度。通过正则化施加流体力学的物理规律。引入了创造性的损失函数项来处理噪声和超分辨率。训练好的患者特定 DNN 可以进行采样,生成无噪声的高分辨率血流图像。该方法使用 TensorFlow DNN 库实现,并在数值体模上进行了测试,在透明模型上进行了高分辨率粒子图像测速(PIV)和脉动流条件下的 4D-Flow MRI 实验的体外验证。

结果

在数值体模的情况下,与模拟的 4D-Flow MRI 相比,我们能够将空间分辨率提高 100 倍,将时间分辨率提高 5 倍。速度归一化均方根误差(vNRMSE)降低了一个数量级。在使用 PIV 作为参考的体外验证测试中,时空分辨率也有类似的提高。尽管 vNRMSE 降低了 50%,但该方法无法消除 4D-Flow MRI 测量引入的与参考 PIV 相比的系统偏差。

结论

这项工作证明了使用深度学习的现有工具通过纯数据驱动方法增强 4D-Flow MRI 的可行性。与当前的最先进方法不同,该方法对几何形状和边界条件是不可知的,因此不需要繁琐的任务,如几何形状的精确图像分割、图像配准和边界流动条件的估计。可以选择任意感兴趣区域进行处理。这项工作将带来用户友好的分析工具,使在临床环境中对血管疾病进行定量血液动力学分析成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验