Suppr超能文献

基于光电容积脉搏波的心律失常分类。

Cardiac arrhythmias classification using photoplethysmography database.

机构信息

Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O.Box 21163, Irbid, Jordan.

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.

出版信息

Sci Rep. 2024 Feb 9;14(1):3355. doi: 10.1038/s41598-024-53142-9.

Abstract

Worldwide, Cardiovascular Diseases (CVDs) are the leading cause of death. Patients at high cardiovascular risk require long-term follow-up for early CVDs detection. Generally, cardiac arrhythmia detection through the electrocardiogram (ECG) signal has been the basis of many studies. This technique does not provide sufficient information in addition to a high false alarm potential. In addition, the electrodes used to record the ECG signal are not suitable for long-term monitoring. Recently, the photoplethysmogram (PPG) signal has attracted great interest among scientists as it provides a non-invasive, inexpensive, and convenient source of information related to cardiac activity. In this paper, the PPG signal (online database Physio Net Challenge 2015) is used to classify different cardiac arrhythmias, namely, tachycardia, bradycardia, ventricular tachycardia, and ventricular flutter/fibrillation. The PPG signals are pre-processed and analyzed utilizing various signal-processing techniques to eliminate noise and artifacts, which forms a stage of signal preparation prior to the feature extraction process. A set of 41 PPG features is used for cardiac arrhythmias' classification through the application of four machine-learning techniques, namely, Decision Trees (DT), Support Vector Machines (SVM), K-Nearest Neighbors (KNNs), and Ensembles. Principal Component Analysis (PCA) technique is used for dimensionality reduction and feature extraction while preserving the most important information in the data. The results show a high-throughput evaluation with an accuracy of 98.4% for the KNN technique with a sensitivity of 98.3%, 95%, 96.8%, and 99.7% for bradycardia, tachycardia, ventricular flutter/fibrillation, and ventricular tachycardia, respectively. The outcomes of this work provide a tool to correlate the properties of the PPG signal with cardiac arrhythmias and thus the early diagnosis and treatment of CVDs.

摘要

在全球范围内,心血管疾病(CVDs)是导致死亡的主要原因。心血管疾病高危患者需要进行长期随访,以早期发现心血管疾病。通常,通过心电图(ECG)信号检测心律失常一直是许多研究的基础。除了潜在的高误报率外,该技术不能提供足够的信息。此外,用于记录 ECG 信号的电极不适合长期监测。最近,光体积描记图(PPG)信号因其提供与心脏活动相关的非侵入性、低成本和便捷信息源而引起了科学家们的极大兴趣。在本文中,使用 PPG 信号(在线数据库 Physio Net Challenge 2015)对不同的心律失常进行分类,即心动过速、心动过缓、室性心动过速和室性扑动/颤动。对 PPG 信号进行预处理和分析,利用各种信号处理技术消除噪声和伪影,这是特征提取过程之前的信号准备阶段。通过应用四种机器学习技术,即决策树(DT)、支持向量机(SVM)、K 最近邻(KNNs)和集成,使用一组 41 个 PPG 特征对心律失常进行分类。主成分分析(PCA)技术用于降维和特征提取,同时保留数据中的最重要信息。结果表明,KNN 技术具有 98.4%的高精度、98.3%的敏感性、95%的敏感性、96.8%的敏感性和 99.7%的敏感性,分别用于心动过缓、心动过速、室性扑动/颤动和室性心动过速。这项工作的结果提供了一种工具,可将 PPG 信号的特性与心律失常相关联,从而实现 CVDs 的早期诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8b2/10858029/df5ef14d057d/41598_2024_53142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验