Suppr超能文献

生物保护剂在动物生产中的益生菌潜力及代谢产物特性与应用

The Probiotic Potential and Metabolite Characterization of Bioprotective and for Applications in Animal Production.

作者信息

Evangelista Alberto Gonçalves, Nazareth Tiago de Melo, Luz Carlos, Dopazo Victor, Moreno Ana, Riolo Mario, Meca Giuseppe, Luciano Fernando Bittencourt

机构信息

Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155 Prado Velho, Curitiba 80215-901, PR, Brazil.

Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain.

出版信息

Animals (Basel). 2024 Jan 25;14(3):388. doi: 10.3390/ani14030388.

Abstract

Probiotics are increasingly recognized for their potential in managing bacterial challenges in animal production. This study aimed to evaluate the probiotic potential of and , specifically their bioprotective ability against . In agar inhibition assays, these bacteria supported -inhibition zones, ranging from 2.5 ± 0.5 to 6.3 ± 2.0 mm. Analyses of antimicrobial metabolites revealed their capacity to produce compounds with anti- properties, except for MLB2. When was exposed to lyophilized metabolites, inhibition occurred in both liquid (at concentrations between 250 and 500 g/L) and solid cultures (at 500 g/L). To confirm their probiotic potential, the and strains underwent evaluations for antimicrobial resistance, bile salt tolerance, auto- and co-aggregation, pH resistance, and their ability to adhere to and inhibit in Caco-2 cells. These assessments confirmed their probiotic potential. The probiotic strains were further encapsulated and subjected to simulated swine and poultry digestion. They demonstrated survival potential through the gastrointestinal tract and significantly reduced the population. Thus, these strains exhibit considerable promise for producing biotechnological products aimed at controlling in animal production. This approach ensures the health and hygiene of farming facilities, mitigates the spread of zoonotic bacteria, and contributes positively to public health.

摘要

益生菌在应对动物生产中的细菌挑战方面的潜力日益受到认可。本研究旨在评估[具体细菌名称1]和[具体细菌名称2]的益生菌潜力,特别是它们对[目标细菌名称]的生物保护能力。在琼脂抑制试验中,这些细菌形成的抑菌圈大小为2.5±0.5至6.3±2.0毫米。对抗菌代谢产物的分析表明,除了[细菌名称MLB2]外,它们能够产生具有抗菌特性的化合物。当[目标细菌名称]暴露于冻干代谢产物时,在液体培养(浓度为250至500克/升)和固体培养(500克/升)中均出现抑制现象。为了确认它们的益生菌潜力,对[具体细菌名称1]和[具体细菌名称2]菌株进行了抗微生物抗性、胆盐耐受性、自聚集和共聚集、耐pH值以及它们在Caco-2细胞中黏附并抑制[目标细菌名称]的能力的评估。这些评估证实了它们的益生菌潜力。益生菌菌株进一步进行包封,并进行模拟猪和家禽消化试验。它们在胃肠道中表现出存活潜力,并显著减少了[目标细菌名称]的数量。因此,这些菌株在生产旨在控制动物生产中[目标细菌名称]的生物技术产品方面具有相当大的前景。这种方法可确保养殖设施的健康和卫生,减轻人畜共患病细菌的传播,并对公共卫生做出积极贡献。

相似文献

2
Selection and evaluation of lactic acid bacteria from chicken feces in Thailand as potential probiotics.
PeerJ. 2023 Dec 14;11:e16637. doi: 10.7717/peerj.16637. eCollection 2023.
4
Evaluation of Potential Probiotic Properties of Lactobacillus and Bacillus Strains Derived from Various Sources for Their Potential Use in Swine Feeding.
Probiotics Antimicrob Proteins. 2023 Jun;15(3):479-490. doi: 10.1007/s12602-021-09861-w. Epub 2021 Oct 19.
6
In vitro evaluation of candidate Bacillus spp. for animal feed.
J Gen Appl Microbiol. 2017 May 12;63(2):147-156. doi: 10.2323/jgam.2016.09.002. Epub 2017 Mar 22.
8
Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection.
Res Vet Sci. 2012 Aug;93(1):74-81. doi: 10.1016/j.rvsc.2011.08.008. Epub 2011 Sep 9.
10
Cell-free supernatants produced by lactic acid bacteria reduce population .
Microbiology (Reading). 2021 Nov;167(11). doi: 10.1099/mic.0.001102.

引用本文的文献

1
Incorporation of probiotics in post-harvest wash treatments reduces Salmonella contamination and improves egg safety.
Poult Sci. 2025 Jun;104(6):105146. doi: 10.1016/j.psj.2025.105146. Epub 2025 Apr 9.
2
Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production.
Vet Res Commun. 2024 Dec;48(6):3847-3857. doi: 10.1007/s11259-024-10552-4. Epub 2024 Sep 24.
3
Effects of on Growth Performance, Metabolic Profile, and Health Status in Dairy Calves.
Animals (Basel). 2024 Aug 27;14(17):2489. doi: 10.3390/ani14172489.

本文引用的文献

1
Recent advances in the use of bacterial probiotics in animal production.
Anim Health Res Rev. 2023 Dec;24(2):41-53. doi: 10.1017/S1466252323000063.
2
Probiotics: mechanism of action, health benefits and their application in food industries.
Front Microbiol. 2023 Aug 17;14:1216674. doi: 10.3389/fmicb.2023.1216674. eCollection 2023.
4
Present Status, Limitations, and Prospects of Using Streptomyces Bacteria as a Potential Probiotic Agent in Aquaculture.
Probiotics Antimicrob Proteins. 2024 Apr;16(2):426-442. doi: 10.1007/s12602-023-10053-x. Epub 2023 Mar 18.
5
Bioprotective potential of lactic acid bacteria for Salmonella biocontrol in vitro.
Vet Res Commun. 2023 Sep;47(3):1357-1368. doi: 10.1007/s11259-023-10083-4. Epub 2023 Feb 24.
6
Biosynthetic pathway of peucemycin and identification of its derivative from Streptomyces peucetius.
Appl Microbiol Biotechnol. 2023 Feb;107(4):1217-1231. doi: 10.1007/s00253-023-12385-8. Epub 2023 Jan 21.
7
An alternative σ factor σ regulates lincomycin production in Streptomyces lincolnensis.
J Basic Microbiol. 2023 Feb;63(2):190-199. doi: 10.1002/jobm.202200485. Epub 2022 Dec 1.
10
Bioprotective potential of lactic acid bacteria and their metabolites against enterotoxigenic .
Microbiology (Reading). 2022 Jul;168(7). doi: 10.1099/mic.0.001216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验