Suppr超能文献

基于深度学习的高光谱成像技术对贮藏年份的识别与分类

Identification and Classification of Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning.

作者信息

Bai Ruibin, Zhou Junhui, Wang Siman, Zhang Yue, Nan Tiegui, Yang Bin, Zhang Chu, Yang Jian

机构信息

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

School of Information Engineering, Huzhou University, Huzhou 313000, China.

出版信息

Foods. 2024 Feb 4;13(3):498. doi: 10.3390/foods13030498.

Abstract

Developing a fast and non-destructive methodology to identify the storage years of is important in safeguarding consumer well-being. This study employed the utilization of hyperspectral imaging (HSI) in conjunction with conventional machine learning techniques such as support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), as well as the deep learning method of residual neural network (ResNet), to establish identification models for samples from different storage years. Under the fusion-based modeling approach, the model's classification accuracy surpasses that of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectral modeling individually. The classification accuracy of the ResNet model and SVM exceeds that of other conventional machine learning models (KNN, RF, and XGBoost). Redundant variables were further diminished through competitive adaptive reweighted sampling feature wavelength screening, which had less impact on the model's accuracy. Upon validating the model's performance using an external validation set, the ResNet model yielded more satisfactory outcomes, exhibiting recognition accuracy exceeding 85%. In conclusion, the comprehensive results demonstrate that the integration of deep learning with HSI techniques effectively distinguishes samples from different storage years.

摘要

开发一种快速且无损的方法来识别[具体物品]的储存年份对于保障消费者福祉至关重要。本研究利用高光谱成像(HSI)结合传统机器学习技术,如支持向量机(SVM)、k近邻(KNN)、随机森林(RF)、极端梯度提升(XGBoost),以及深度学习方法残差神经网络(ResNet),为不同储存年份的[具体物品]样本建立识别模型。在基于融合的建模方法下,模型的分类准确率超过了单独的可见近红外(VNIR)和短波红外(SWIR)光谱建模。ResNet模型和SVM的分类准确率超过了其他传统机器学习模型(KNN、RF和XGBoost)。通过竞争性自适应重加权采样特征波长筛选进一步减少了冗余变量,这对模型准确率的影响较小。使用外部验证集验证模型性能时,ResNet模型产生了更令人满意的结果,识别准确率超过85%。总之,综合结果表明深度学习与HSI技术的结合有效地区分了不同储存年份的[具体物品]样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d7c/10855119/f840e8744a84/foods-13-00498-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验