State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, PR China.
Food Chem. 2024 Jan 1;430:136917. doi: 10.1016/j.foodchem.2023.136917. Epub 2023 Jul 27.
Panax ginseng C. A. Meyer (PG) is a health-promoting food, and its ginsenosides (Rb1, Rg1, Re) content, as the quality indicator, is affected by the planting modes (garden or forest ginsengs) and years. Effective prediction of this content remains to be investigated. In this study, hyperspectral (HSI) combined with ensemble model (CGRU-GPR) including the convolutional neural network (CNN), gate recurrent unit (GRU), and Gaussian process regression (GPR) realized a comprehensive evaluation of the prediction performance and predictive uncertainty. With effective wavelengths, the proposed CGRU-GPR model improved operation efficiency and obtained satisfactory prediction results with relative percent deviation (RPD) values all higher than 2.70 in three ginsenosides. Meanwhile, the interval prediction with a high prediction interval coverage probability (PICP) of 0.97 - 1.0 and a low mean width percentage (MWP) of 0.7 - 1.66 indicated a low prediction uncertainty. This study provides a rapid and reliable method for predicting ginsenosides contents in PG.
人参(Panax ginseng C. A. Meyer,PG)是一种具有保健作用的食品,其人参皂苷(Rb1、Rg1、Re)含量作为质量指标,受到种植方式(园参或林下参)和年限的影响。有效预测这一含量仍有待研究。本研究通过结合高光谱(HSI)和集成模型(CGRU-GPR),包括卷积神经网络(CNN)、门控循环单元(GRU)和高斯过程回归(GPR),实现了对预测性能和预测不确定性的综合评价。利用有效波长,所提出的 CGRU-GPR 模型提高了运算效率,并在三种人参皂苷中获得了令人满意的预测结果,相对百分偏差(RPD)值均高于 2.70。同时,预测区间具有较高的预测区间覆盖率(PICP)为 0.97-1.0,平均宽度百分比(MWP)为 0.7-1.66,表明预测不确定性较低。本研究为人参中人参皂苷含量的快速可靠预测提供了一种方法。