文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种经过验证的方法学途径,用于证明磁热疗中临床电磁感应系统的安全性。

A Validated Methodological Approach to Prove the Safety of Clinical Electromagnetic Induction Systems in Magnetic Hyperthermia.

作者信息

Rouni Maria Anastasia, Shalev Boaz, Tsanidis George, Markakis Ioannis, Kraus Sarah, Rukenstein Pazit, Suchi Doron, Shalev Ofer, Samaras Theodoros

机构信息

Thessaloniki Software Solutions S.A., 55535 Thessaloniki, Greece.

Faculty of Sciences, School of Physics, Aristotle University, 54124 Thessaloniki, Greece.

出版信息

Cancers (Basel). 2024 Jan 31;16(3):621. doi: 10.3390/cancers16030621.


DOI:10.3390/cancers16030621
PMID:38339373
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10854696/
Abstract

The present study focuses on the development of a methodology for evaluating the safety of MNH systems, through the numerical prediction of the induced temperature rise in superficial skin layers due to eddy currents heating under an alternating magnetic field (AMF). The methodology is supported and validated through experimental measurements of the AMF's distribution, as well as temperature data from the torsos of six patients who participated in a clinical trial study. The simulations involved a computational model of the actual coil, a computational model of the cooling system used for the cooling of the patients during treatment, and a detailed human anatomical model from the Virtual Population family. The numerical predictions exhibit strong agreement with the experimental measurements, and the deviations are below the estimated combined uncertainties, confirming the accuracy of computational modeling. This study highlights the crucial role of simulations for translational medicine and paves the way for personalized treatment planning.

摘要

本研究聚焦于开发一种评估磁共振导航系统安全性的方法,该方法通过数值预测交变磁场(AMF)作用下涡流加热导致的表皮温度升高来实现。通过对AMF分布的实验测量以及参与临床试验研究的六名患者躯干的温度数据,对该方法进行了支持和验证。模拟涉及实际线圈的计算模型、治疗期间用于冷却患者的冷却系统的计算模型以及虚拟人口家族的详细人体解剖模型。数值预测与实验测量结果高度吻合,偏差低于估计的综合不确定性,证实了计算建模的准确性。本研究突出了模拟在转化医学中的关键作用,并为个性化治疗规划铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/7642fabbf73c/cancers-16-00621-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/44d968b3381c/cancers-16-00621-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/127b82990831/cancers-16-00621-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/8ab4a2927d4c/cancers-16-00621-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/9d09fcbfd9a1/cancers-16-00621-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/ed3b7fff50dd/cancers-16-00621-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/2c8ef0a51620/cancers-16-00621-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/edae7e16f522/cancers-16-00621-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/6cf17662bd08/cancers-16-00621-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/6cb8e5962496/cancers-16-00621-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/0ffa594ae153/cancers-16-00621-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/7642fabbf73c/cancers-16-00621-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/44d968b3381c/cancers-16-00621-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/127b82990831/cancers-16-00621-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/8ab4a2927d4c/cancers-16-00621-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/9d09fcbfd9a1/cancers-16-00621-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/ed3b7fff50dd/cancers-16-00621-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/2c8ef0a51620/cancers-16-00621-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/edae7e16f522/cancers-16-00621-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/6cf17662bd08/cancers-16-00621-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/6cb8e5962496/cancers-16-00621-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/0ffa594ae153/cancers-16-00621-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3261/10854696/7642fabbf73c/cancers-16-00621-g011.jpg

相似文献

[1]
A Validated Methodological Approach to Prove the Safety of Clinical Electromagnetic Induction Systems in Magnetic Hyperthermia.

Cancers (Basel). 2024-1-31

[2]
Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.

Cancers (Basel). 2023-3-8

[3]
Magnetic nanoparticle hyperthermia: Predictive model for temperature distribution.

Proc SPIE Int Soc Opt Eng. 2013-2-26

[4]
Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2021

[5]
In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.

Int J Hyperthermia. 2021

[6]
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

Biomed Tech (Berl). 2015-10

[7]
Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers.

Int J Hyperthermia. 2024

[8]
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.

Int J Hyperthermia. 2016-11

[9]
Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.

Int J Hyperthermia. 2020-12

[10]
Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head.

Int J Hyperthermia. 2016-9

引用本文的文献

[1]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[2]
Advances in magnetic induction hyperthermia.

Front Bioeng Biotechnol. 2024-8-5

本文引用的文献

[1]
Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.

Cancers (Basel). 2023-3-8

[2]
Three dimensional models of human thermoregulation: A review.

J Therm Biol. 2023-2

[3]
Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy.

Cancers (Basel). 2022-6-23

[4]
Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and safety assessments.

Arch Toxicol. 2022-9

[5]
Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia.

Nanomaterials (Basel). 2022-2-6

[6]
Novel Nanoparticle-Based Cancer Treatment, Effectively Inhibits Lung Metastases and Improves Survival in a Murine Breast Cancer Model.

Front Oncol. 2021-11-5

[7]
Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2021

[8]
Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.

Int J Hyperthermia. 2021

[9]
Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents.

Nanomaterials (Basel). 2021-2-23

[10]
Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索