Ahmed Yaman B, Ababneh Obada E, Al-Khalili Anas A, Serhan Abdullah, Hatamleh Zaid, Ghammaz Owais, Alkhaldi Mohammad, Alomari Safwan
School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
Cancers (Basel). 2024 Feb 1;16(3):633. doi: 10.3390/cancers16030633.
Glioblastoma (GBM) represents a profoundly aggressive and heterogeneous brain neoplasm linked to a bleak prognosis. Hypoxia, a common feature in GBM, has been linked to tumor progression and therapy resistance. In this study, we aimed to identify hypoxia-related differentially expressed genes (DEGs) and construct a prognostic signature for GBM patients using multi-omics analysis. Patient cohorts were collected from publicly available databases, including the Gene Expression Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas-Glioblastoma Multiforme (TCGA-GBM), to facilitate a comprehensive analysis. Hypoxia-related genes (HRGs) were obtained from the Molecular Signatures Database (MSigDB). Differential expression analysis revealed 41 hypoxia-related DEGs in GBM patients. A consensus clustering approach, utilizing these DEGs' expression patterns, identified four distinct clusters, with cluster 1 showing significantly better overall survival. Machine learning techniques, including univariate Cox regression and LASSO regression, delineated a prognostic signature comprising six genes (ANXA1, CALD1, CP, IGFBP2, IGFBP5, and LOX). Multivariate Cox regression analysis substantiated the prognostic significance of a set of three optimal signature genes (CP, IGFBP2, and LOX). Using the hypoxia-related prognostic signature, patients were classified into high- and low-risk categories. Survival analysis demonstrated that the high-risk group exhibited inferior overall survival rates in comparison to the low-risk group. The prognostic signature showed good predictive performance, as indicated by the area under the curve (AUC) values for one-, three-, and five-year overall survival. Furthermore, functional enrichment analysis of the DEGs identified biological processes and pathways associated with hypoxia, providing insights into the underlying mechanisms of GBM. Delving into the tumor immune microenvironment, our analysis revealed correlations relating the hypoxia-related prognostic signature to the infiltration of immune cells in GBM. Overall, our study highlights the potential of a hypoxia-related prognostic signature as a valuable resource for forecasting the survival outcome of GBM patients. The multi-omics approach integrating bulk sequencing, single-cell analysis, and immune microenvironment assessment enhances our understanding of the intricate biology characterizing GBM, thereby potentially informing the tailored design of therapeutic interventions.
胶质母细胞瘤(GBM)是一种极具侵袭性且异质性的脑肿瘤,预后不佳。缺氧是GBM的一个常见特征,与肿瘤进展和治疗耐药性有关。在本研究中,我们旨在通过多组学分析鉴定与缺氧相关的差异表达基因(DEG),并构建GBM患者的预后特征。从公开可用的数据库收集患者队列,包括基因表达综合数据库(GEO)、中国胶质瘤基因组图谱(CGGA)和癌症基因组图谱 - 多形性胶质母细胞瘤(TCGA - GBM),以促进全面分析。与缺氧相关的基因(HRG)从分子特征数据库(MSigDB)中获取。差异表达分析揭示了GBM患者中41个与缺氧相关的DEG。一种共识聚类方法利用这些DEG的表达模式,识别出四个不同的聚类,其中聚类1显示出显著更好的总生存期。包括单变量Cox回归和LASSO回归在内的机器学习技术确定了一个由六个基因(ANXA1、CALD1、CP、IGFBP2、IGFBP5和LOX)组成的预后特征。多变量Cox回归分析证实了一组三个最佳特征基因(CP、IGFBP2和LOX)的预后意义重要性。使用与缺氧相关的预后特征,将患者分为高风险和低风险类别组。生存分析表明,与低风险组相比,高风险组的总生存率较低。预后特征显示出良好的预测性能,这由1年、3年和5年总生存期的曲线下面积(AUC)值表明。此外,对DEG的功能富集分析确定了与缺氧相关的生物学过程和途径,为GBM的潜在机制提供了见解。深入研究肿瘤免疫微环境,我们的分析揭示了与缺氧相关的预后特征与GBM中免疫细胞浸润之间的相关性。总体而言,我们的研究强调了与缺氧相关的预后特征作为预测GBM患者生存结果的宝贵资源的潜力。整合批量测序、单细胞分析和免疫微环境评估的多组学方法增强了我们对GBM复杂生物学特性的理解,从而有可能为治疗干预的量身定制设计提供信息。