Suppr超能文献

综合分析评估多形性胶质母细胞瘤中特征性mRNA的预后价值

Integrated Analysis to Evaluate the Prognostic Value of Signature mRNAs in Glioblastoma Multiforme.

作者信息

Yang Ji'an, Wang Long, Xu Zhou, Wu Liquan, Liu Baohui, Wang Junmin, Tian Daofeng, Xiong Xiaoxing, Chen Qianxue

机构信息

Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

Front Genet. 2020 Mar 31;11:253. doi: 10.3389/fgene.2020.00253. eCollection 2020.

Abstract

BACKGROUND

Gliomas are the most common intracranial tumors and are classified as I-IV. Among them, glioblastoma multiforme (GBM) is the most common invasive glioma with a poor prognosis. New molecular biomarkers that can predict clinical outcomes in GBM patients must be identified, which will help comprehend their pathogenesis and supply personalized treatment. Our research revealed four powerful survival indicators in GBM by reanalyzing microarray data and genetic sequencing data in public databases. Moreover, it unraveled new potential therapeutic targets which could help improve the survival time and quality of life of GBM patients.

MATERIALS AND METHODS

To identify prognostic signatures in GBMs, we analyzed the gene profiling data of GBM and standard brain samples from the Gene Expression Omnibus, including four datasets and RNA sequencing data from The Cancer Genome Atlas (TCGA) containing 152 glioblastoma tissues. We performed the differential analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, weighted gene co-expression network analysis (WGCNA) and Cox regression analysis.

RESULTS

After differential analysis in GSE12657, GSE15824, GSE42656 and GSE50161, overlapping differentially expressed genes were identified. We identified 110 up-regulated DEGs and 75 down-regulated DEGs in the GBM samples. Significantly enriched subclasses of the GO classification of these genes included mitotic sister chromatid separation, mitotic nuclear division and so on. In KEGG pathway analysis, the most abundant terms were ECM-receptor interaction and protein digestion and absorption. WGCNA analysis was performed on these 185 DEGs in 152 glioblastoma samples obtained from TCGA, and gene co-expression networks were constructed. We then performed a multivariate Cox analysis and established a Cox proportional hazards regression model using the top 20 genes significantly correlated with survival time. We identified a four-protein prognostic signature that could divide patients into high-risk and low-risk groups. Increased expression of SLC12A5, CCL2, IGFBP2, and PDPN was associated with increased risk scores. Finally, the K-M curves confirmed that these genes could be used as independent predictors of survival in patients with glioblastoma.

CONCLUSION

Our analytical study identified a set of potential biomarkers that could predict survival and may contribute to successful treatment of GBM patients.

摘要

背景

胶质瘤是最常见的颅内肿瘤,分为I-IV级。其中,多形性胶质母细胞瘤(GBM)是最常见的侵袭性胶质瘤,预后较差。必须确定能够预测GBM患者临床结局的新分子生物标志物,这将有助于理解其发病机制并提供个性化治疗。我们的研究通过重新分析公共数据库中的微阵列数据和基因测序数据,揭示了GBM中的四个强大生存指标。此外,它还揭示了新的潜在治疗靶点,有助于提高GBM患者的生存时间和生活质量。

材料与方法

为了确定GBM中的预后特征,我们分析了来自基因表达综合数据库(Gene Expression Omnibus)的GBM和标准脑样本的基因谱数据,包括四个数据集以及来自癌症基因组图谱(TCGA)的包含152个胶质母细胞瘤组织的RNA测序数据。我们进行了差异分析、基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析、加权基因共表达网络分析(WGCNA)以及Cox回归分析。

结果

在对GSE12657、GSE15824、GSE42656和GSE50161进行差异分析后,鉴定出重叠的差异表达基因。我们在GBM样本中鉴定出110个上调的差异表达基因(DEGs)和75个下调的DEGs。这些基因的GO分类中显著富集的亚类包括有丝分裂姐妹染色单体分离、有丝分裂核分裂等。在KEGG通路分析中,最丰富的条目是细胞外基质受体相互作用以及蛋白质消化和吸收。对从TCGA获得的152个胶质母细胞瘤样本中的这185个DEGs进行WGCNA分析,并构建基因共表达网络。然后我们进行多变量Cox分析,并使用与生存时间显著相关的前20个基因建立Cox比例风险回归模型。我们确定了一个四蛋白预后特征,可将患者分为高风险和低风险组。溶质载体家族12成员5(SLC12A5)、趋化因子配体2(CCL2)、胰岛素样生长因子结合蛋白2(IGFBP2)和血小板源性蛋白聚糖(PDPN)表达的增加与风险评分增加相关。最后,Kaplan-Meier曲线证实这些基因可作为胶质母细胞瘤患者生存的独立预测指标。

结论

我们的分析研究确定了一组潜在的生物标志物,可预测生存情况,并可能有助于GBM患者的成功治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85d7/7136556/e04eb13aa880/fgene-11-00253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验