Suppr超能文献

一种基于频谱图增强旋转特性的智能滚珠轴承故障诊断系统。

An Intelligent Ball Bearing Fault Diagnosis System Using Enhanced Rotational Characteristics on Spectrogram.

作者信息

Seong Gyujin, Kim Dongwan

机构信息

Department of Electronics Engineering, Dong-A University, Busan 49315, Republic of Korea.

出版信息

Sensors (Basel). 2024 Jan 25;24(3):776. doi: 10.3390/s24030776.

Abstract

Faults in the ball bearing are a major cause of failure in rotating machinery where ball bearings are used. Therefore, there is a growing demand for ball bearing fault diagnosis to prevent failures in rotating machinery. Although studies on the fault diagnosis of bearing have been conducted using temperature measurements and sound monitoring, these methods have limitations, because they are affected by external noise. Therefore, many researchers have studied vibration monitoring for bearing fault diagnosis. Among these, mel-frequency cepstral coefficients (MFCCs) and 2D convolutional neural networks (CNNs) have attracted significant attention in vibration monitoring schemes. However, the MFCC in existing studies requires a high sampling rate and an expansive frequency band utilization. In addition, 2D CNNs are highly complex. In this study, a rotational characteristic emphasis (RCE) spectrogram process and an optimized CNN were proposed to solve these problems. The RCE spectrogram process analyzes a narrow frequency band and produces low-resolution images. The optimized CNN was designed with a shallow network structure. The experimental results showed an accuracy of 0.9974 for the proposed system. The optimized CNN model has parameters of 5.81 KB and of 1.53×106. We demonstrate that the proposed ball bearing fault diagnosis system can achieve high accuracy with low complexity. Thus, we propose a ball bearing fault diagnosis scheme that is applicable to a low sampling rate and changing rotation frequency.

摘要

滚珠轴承故障是使用滚珠轴承的旋转机械发生故障的主要原因。因此,对滚珠轴承故障诊断以防止旋转机械故障的需求日益增长。尽管已经通过温度测量和声音监测对轴承故障诊断进行了研究,但这些方法存在局限性,因为它们会受到外部噪声的影响。因此,许多研究人员研究了用于轴承故障诊断的振动监测。其中,梅尔频率倒谱系数(MFCC)和二维卷积神经网络(CNN)在振动监测方案中引起了极大关注。然而,现有研究中的MFCC需要高采样率和广泛的频带利用率。此外,二维CNN非常复杂。在本研究中,提出了一种旋转特征增强(RCE)频谱图处理方法和优化的CNN来解决这些问题。RCE频谱图处理分析窄频带并生成低分辨率图像。优化的CNN采用浅网络结构设计。实验结果表明,所提出系统的准确率为0.9974。优化后的CNN模型参数为5.81 KB,计算量为1.53×106。我们证明,所提出的滚珠轴承故障诊断系统可以在低复杂度下实现高精度。因此,我们提出了一种适用于低采样率和变化旋转频率的滚珠轴承故障诊断方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/589f/10857163/07c76c4a7877/sensors-24-00776-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验