Suppr超能文献

具有混合联邦融合架构的弹性多传感器无人机导航

Resilient Multi-Sensor UAV Navigation with a Hybrid Federated Fusion Architecture.

作者信息

Negru Sorin Andrei, Geragersian Patrick, Petrunin Ivan, Guo Weisi

机构信息

School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK.

出版信息

Sensors (Basel). 2024 Feb 2;24(3):981. doi: 10.3390/s24030981.

Abstract

Future UAV (unmanned aerial vehicle) operations in urban environments demand a PNT (position, navigation, and timing) solution that is both robust and resilient. While a GNSS (global navigation satellite system) can provide an accurate position under open-sky assumptions, the complexity of urban operations leads to NLOS (non-line-of-sight) and multipath effects, which in turn impact the accuracy of the PNT data. A key research question within the research community pertains to determining the appropriate hybrid fusion architecture that can ensure the resilience and continuity of UAV operations in urban environments, minimizing significant degradations of PNT data. In this context, we present a novel federated fusion architecture that integrates data from the GNSS, the IMU (inertial measurement unit), a monocular camera, and a barometer to cope with the GNSS multipath and positioning performance degradation. Within the federated fusion architecture, local filters are implemented using EKFs (extended Kalman filters), while a master filter is used in the form of a GRU (gated recurrent unit) block. Data collection is performed by setting up a virtual environment in AirSim for the visual odometry aid and barometer data, while Spirent GSS7000 hardware is used to collect the GNSS and IMU data. The hybrid fusion architecture is compared to a classic federated architecture (formed only by EKFs) and tested under different light and weather conditions to assess its resilience, including multipath and GNSS outages. The proposed solution demonstrates improved resilience and robustness in a range of degraded conditions while maintaining a good level of positioning performance with a 95th percentile error of 0.54 m for the square scenario and 1.72 m for the survey scenario.

摘要

未来无人机在城市环境中的运行需要一种强大且可靠的定位、导航和授时(PNT)解决方案。虽然全球导航卫星系统(GNSS)在开阔天空假设下可以提供精确位置,但城市运行的复杂性会导致非视距(NLOS)和多径效应,进而影响PNT数据的准确性。研究界的一个关键研究问题是确定合适的混合融合架构,以确保无人机在城市环境中运行的弹性和连续性,最大限度地减少PNT数据的显著退化。在此背景下,我们提出了一种新颖的联邦融合架构,该架构整合了来自GNSS、惯性测量单元(IMU)、单目相机和气压计的数据,以应对GNSS多径和定位性能退化问题。在联邦融合架构中,局部滤波器使用扩展卡尔曼滤波器(EKFs)实现,而主滤波器采用门控循环单元(GRU)块的形式。通过在AirSim中设置虚拟环境来收集视觉里程计辅助数据和气压计数据,同时使用思博伦GSS7000硬件收集GNSS和IMU数据。将这种混合融合架构与经典联邦架构(仅由EKFs组成)进行比较,并在不同的光照和天气条件下进行测试,以评估其弹性,包括多径和GNSS中断情况。所提出的解决方案在一系列退化条件下展示了更高的弹性和鲁棒性,同时保持了良好的定位性能水平,在方形场景中第95百分位数误差为0.54米,在测量场景中为1.72米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd7c/10857391/32d28e9cf65d/sensors-24-00981-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验