Suppr超能文献

迈向脑-神经形态学接口。

Toward a Brain-Neuromorphics Interface.

作者信息

Wan Changjin, Pei Mengjiao, Shi Kailu, Cui Hangyuan, Long Haotian, Qiao Lesheng, Xing Qianye, Wan Qing

机构信息

Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China.

School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

出版信息

Adv Mater. 2024 Sep;36(37):e2311288. doi: 10.1002/adma.202311288. Epub 2024 Feb 21.

Abstract

Brain-computer interfaces (BCIs) that enable human-machine interaction have immense potential in restoring or augmenting human capabilities. Traditional BCIs are realized based on complementary metal-oxide-semiconductor (CMOS) technologies with complex, bulky, and low biocompatible circuits, and suffer with the low energy efficiency of the von Neumann architecture. The brain-neuromorphics interface (BNI) would offer a promising solution to advance the BCI technologies and shape the interactions with machineries. Neuromorphic devices and systems are able to provide substantial computation power with extremely high energy-efficiency by implementing in-materia computing such as in situ vector-matrix multiplication (VMM) and physical reservoir computing. Recent progresses on integrating neuromorphic components with sensing and/or actuating modules, give birth to the neuromorphic afferent nerve, efferent nerve, sensorimotor loop, and so on, which has advanced the technologies for future neurorobotics by achieving sophisticated sensorimotor capabilities as the biological system. With the development on the compact artificial spiking neuron and bioelectronic interfaces, the seamless communication between a BNI and a bioentity is reasonably expectable. In this review, the upcoming BNIs are profiled by introducing the brief history of neuromorphics, reviewing the recent progresses on related areas, and discussing the future advances and challenges that lie ahead.

摘要

能够实现人机交互的脑机接口(BCI)在恢复或增强人类能力方面具有巨大潜力。传统的脑机接口是基于互补金属氧化物半导体(CMOS)技术实现的,其电路复杂、体积庞大且生物相容性低,并且受冯·诺依曼架构低能效的困扰。脑-神经形态接口(BNI)将为推进脑机接口技术以及塑造与机器的交互提供一个有前景的解决方案。神经形态设备和系统能够通过实现诸如原位向量-矩阵乘法(VMM)和物理储层计算等材料内计算,以极高的能源效率提供强大的计算能力。将神经形态组件与传感和/或驱动模块集成方面的最新进展,催生了神经形态传入神经、传出神经、感觉运动环路等,通过实现与生物系统一样复杂的感觉运动能力,推动了未来神经机器人技术的发展。随着紧凑型人工脉冲神经元和生物电子接口的发展,脑-神经形态接口与生物实体之间的无缝通信是可以合理预期的。在这篇综述中,通过介绍神经形态学的简要历史、回顾相关领域的最新进展以及讨论未来的进展和面临的挑战,对即将出现的脑-神经形态接口进行了概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验