Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
Adv Mater. 2024 May;36(19):e2309421. doi: 10.1002/adma.202309421. Epub 2024 Feb 27.
Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.
可生物吸收的电子设备作为临时生物医学植入物代表了一类新兴技术,与目前一系列患者状况相关,这些状况涉及到需要在预期使用期后通过手术取出的技术。获得可靠的性能和良好的降解行为需要能够作为生物流体屏障的材料,以封装结构避免活性电子元件过早降解。在这项工作中,提出了一种满足这一需求的材料设计,其在水不渗透性、机械柔韧性和可加工性方面优于其他替代品。该方法使用聚酸酐和硅氧氮化物的交替薄膜多层组件,分别通过旋涂和等离子体增强化学气相沉积形成。实验和理论研究研究了材料组成和多层结构对水阻隔性能、水分分布和降解行为的影响。带有感应器-电容器电路、无线功率传输系统和无线光电设备的演示说明了这种材料系统作为可生物吸收的封装结构的性能。