Suppr超能文献

浓度驱动的界面非晶化用于高稳定性和高倍率锌金属电池

Concentration-Driven Interfacial Amorphization toward Highly Stable and High-Rate Zn Metal Batteries.

作者信息

Lu Wenqiang, Jiang Heng, Wei Zhixuan, Chen Nan, Wang Ying, Zhang Dong, Du Fei

机构信息

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China.

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

出版信息

Nano Lett. 2024 Feb 21;24(7):2337-2344. doi: 10.1021/acs.nanolett.3c04806. Epub 2024 Feb 11.

Abstract

The interfacial structure holds great promise in suppressing dendrite growth and parasitic reactions of zinc metal in aqueous media. Current advancements prioritize novel component fabrication, yet the local crystal structure significantly impacts the interfacial properties. In addition, there is still a critical need for scalable synthesis methods for expediting the commercialization of aqueous zinc metal batteries (AZMBs). Herein, we propose a scalable concentration-controlled method for realizing crystalline to amorphous transformation of the Zn metal interface with exceptional scalability (>1 m) and processing consistency (>30 trials). Theoretical and experimental analyses highlight the advantages of amorphous ZnO, which exhibits moderate adsorption energy, strong desolvation ability, and hydrophilicity. Employing the amorphous ZnO-coated zinc metal anode (AZO-Zn) significantly enhances the cycling performance, impressively maintaining 1000 cycles at 100 mA cm. The prototype AZO-Zn||MnO@CNT pouch cell demonstrates a capacity of 15.7 mAh and maintains 91% of its highest capacity over 100 cycles, presenting promising avenues for the future commercialization of AZMBs.

摘要

界面结构在抑制水介质中锌金属的枝晶生长和寄生反应方面具有巨大潜力。当前的进展侧重于新型组件制造,但局部晶体结构对界面性质有显著影响。此外,迫切需要可扩展的合成方法来加速水系锌金属电池(AZMBs)的商业化。在此,我们提出一种可扩展的浓度控制方法,以实现具有卓越可扩展性(>1米)和加工一致性(>30次试验)的锌金属界面从晶体到非晶态的转变。理论和实验分析突出了非晶态ZnO的优势,其具有适度的吸附能、强大的去溶剂化能力和亲水性。采用非晶态ZnO包覆的锌金属阳极(AZO-Zn)可显著提高循环性能,在100 mA cm下令人印象深刻地保持1000次循环。原型AZO-Zn||MnO@CNT软包电池展示了15.7 mAh的容量,并在100次循环中保持其最高容量的91%,为AZMBs的未来商业化提供了有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验