Suppr超能文献

用于宽温锂金属电池的含相邻烯基的醚基电解质。

Neighboring alkenyl group participated ether-based electrolyte for wide-temperature lithium metal batteries.

作者信息

Tang Jimin, Wei Zhixuan, Wu Junxiu, Cui Zhuangzhuang, Tian Ruiyuan, Jiang Heng, Du Fei, Lu Jun

机构信息

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China.

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.

出版信息

Nat Commun. 2025 Aug 25;16(1):7917. doi: 10.1038/s41467-025-63262-z.

Abstract

The extensive dendrite formation and unstable interfacial chemical environment pose significant obstacles to operating lithium metal batteries under extreme conditions. Here, we develop an allyl ether electrolyte operated across a wide-temperature range. Leveraging the neighboring group participation effect of alkenyl groups, the designed electrolyte possesses a quasi-weak solvation structure with low desolvation energy. Moreover, this effect facilitates the anion decomposition to form a dual-layer solid electrolyte interface, suppressing dendrite formation and surface parasitic reactions. Therefore, the single-salt, single-solvent electrolyte enables reversible lithium plating/stripping with high Coulombic efficiencies from -40 °C to 60 °C. The assembled 50 μm lithium | |3.5 mAh cm sulfurized polyacrylonitrile full cells achieve capacity retention of 93.1% after 150 stable cycles (0.2 C) at 25 °C, where the positive electrode could retain 78% of its room temperature capacity at -40 °C. Moreover, the pouch cells demonstrate promising cycling stabilities, with a capacity retention of 94.8% (0.5 C), 92.4% (0.2 C), and 72.7% (0.1 C) after 100 cycles at 60 °C, 25 °C, and -40 °C, respectively. This terminal group modification strategy offers perspectives for wide-temperature electrolyte design, representing a crucial advancement in enhancing the performance of lithium metal batteries.

摘要

广泛的枝晶形成和不稳定的界面化学环境给在极端条件下运行锂金属电池带来了重大障碍。在此,我们开发了一种可在宽温度范围内运行的烯丙基醚电解质。利用烯基的邻基参与效应,所设计的电解质具有低去溶剂化能的准弱溶剂化结构。此外,这种效应促进阴离子分解形成双层固体电解质界面,抑制枝晶形成和表面寄生反应。因此,这种单盐、单溶剂电解质能够在-40°C至60°C的温度范围内以高库仑效率实现锂的可逆电镀/剥离。组装的50μm锂||3.5 mAh cm硫化聚丙烯腈全电池在25°C下经过150次稳定循环(0.2 C)后容量保持率为93.1%,其中正极在-40°C时可保持其室温容量的78%。此外,软包电池表现出良好的循环稳定性,在60°C、25°C和-40°C下分别经过100次循环后容量保持率分别为94.8%(0.5 C)、92.4%(0.2 C)和72.7%(0.1 C)。这种端基修饰策略为宽温度电解质设计提供了思路,代表了在提高锂金属电池性能方面的一项关键进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61cf/12378987/9ebacf234757/41467_2025_63262_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验