School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
School of Life Science, Yunnan Normal University, Kunming, 650500, China.
Interdiscip Sci. 2024 Jun;16(2):318-332. doi: 10.1007/s12539-024-00604-3. Epub 2024 Feb 11.
Since gene regulation is a complex process in which multiple genes act simultaneously, accurately inferring gene regulatory networks (GRNs) is a long-standing challenge in systems biology. Although graph neural networks can formally describe intricate gene expression mechanisms, current GRN inference methods based on graph learning regard only transcription factor (TF)-target gene interactions as pairwise relationships, and cannot model the many-to-many high-order regulatory patterns that prevail among genes. Moreover, these methods often rely on limited prior regulatory knowledge, ignoring the structural information of GRNs in gene expression profiles. Therefore, we propose a multi-view hierarchical hypergraphs GRN (MHHGRN) inference model. Specifically, multiple heterogeneous biological information is integrated to construct multi-view hierarchical hypergraphs of TFs and target genes, using hypergraph convolution networks to model higher order complex regulatory relationships. Meanwhile, the coupled information diffusion mechanism and the cross-domain messaging mechanism facilitate the information sharing between genes to optimise gene embedding representations. Finally, a unique channel attention mechanism is used to adaptively learn feature representations from multiple views for GRN inference. Experimental results show that MHHGRN achieves better results than the baseline methods on the E. coli and S. cerevisiae benchmark datasets of the DREAM5 challenge, and it has excellent cross-species generalization, achieving comparable or better performance on scRNA-seq datasets from five mouse and two human cell lines.
由于基因调控是一个复杂的过程,多个基因同时作用,因此准确推断基因调控网络(GRN)是系统生物学中的一个长期挑战。虽然图神经网络可以形式化地描述复杂的基因表达机制,但目前基于图学习的 GRN 推断方法仅将转录因子(TF)-靶基因相互作用视为两两关系,无法模拟基因之间普遍存在的多对多高阶调控模式。此外,这些方法通常依赖于有限的先验调控知识,忽略了基因表达谱中 GRN 的结构信息。因此,我们提出了一种多视图层次超图 GRN(MHHGRN)推断模型。具体来说,多种异构生物信息被整合到 TF 和靶基因的多视图层次超图中,使用超图卷积网络来模拟高阶复杂的调控关系。同时,耦合的信息扩散机制和跨域消息传递机制促进了基因之间的信息共享,以优化基因嵌入表示。最后,使用独特的通道注意力机制从多个视图自适应地学习特征表示,用于 GRN 推断。实验结果表明,MHHGRN 在 DREAM5 挑战的大肠杆菌和酿酒酵母基准数据集上的表现优于基线方法,并且具有出色的跨物种泛化能力,在来自五个小鼠和两个人类细胞系的 scRNA-seq 数据集上的性能可与之媲美或优于其他方法。