Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA.
Nat Methods. 2020 Feb;17(2):147-154. doi: 10.1038/s41592-019-0690-6. Epub 2020 Jan 6.
We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell transcriptional data. As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, literature-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy to simulate single-cell transcriptional data from synthetic and Boolean networks that avoids pitfalls of previously used methods. Furthermore, we collect networks from multiple experimental single-cell RNA-seq datasets. We develop an evaluation framework called BEELINE. We find that the area under the precision-recall curve and early precision of the algorithms are moderate. The methods are better in recovering interactions in synthetic networks than Boolean models. The algorithms with the best early precision values for Boolean models also perform well on experimental datasets. Techniques that do not require pseudotime-ordered cells are generally more accurate. Based on these results, we present recommendations to end users. BEELINE will aid the development of gene regulatory network inference algorithms.
我们对从单细胞转录组数据推断基因调控网络的最新算法进行了系统评估。为了评估准确性,我们使用了具有可预测轨迹的合成网络、文献中整理的布尔模型和多样化的转录调控网络作为基准。我们开发了一种从合成和布尔网络模拟单细胞转录组数据的策略,避免了以前使用的方法的缺陷。此外,我们还从多个实验性单细胞 RNA-seq 数据集收集了网络。我们开发了一种名为 BEELINE 的评估框架。我们发现,算法的精度-召回曲线下面积和早期精度中等。与布尔模型相比,这些方法在恢复合成网络中的相互作用方面表现更好。在布尔模型中具有最佳早期精度值的算法在实验数据集上的表现也很好。不需要伪时间排序细胞的技术通常更准确。基于这些结果,我们为最终用户提出了建议。BEELINE 将有助于基因调控网络推断算法的发展。