College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China.
Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
Biomolecules. 2024 Jun 27;14(7):766. doi: 10.3390/biom14070766.
Understanding the dynamics of gene regulatory networks (GRNs) across diverse cell types poses a challenge yet holds immense value in unraveling the molecular mechanisms governing cellular processes. Current computational methods, which rely solely on expression changes from bulk RNA-seq and/or scRNA-seq data, often result in high rates of false positives and low precision. Here, we introduce an advanced computational tool, DeepIMAGER, for inferring cell-specific GRNs through deep learning and data integration. DeepIMAGER employs a supervised approach that transforms the co-expression patterns of gene pairs into image-like representations and leverages transcription factor (TF) binding information for model training. It is trained using comprehensive datasets that encompass scRNA-seq profiles and ChIP-seq data, capturing TF-gene pair information across various cell types. Comprehensive validations on six cell lines show DeepIMAGER exhibits superior performance in ten popular GRN inference tools and has remarkable robustness against dropout-zero events. DeepIMAGER was applied to scRNA-seq datasets of multiple myeloma (MM) and detected potential GRNs for TFs of , , and in MM dendritic cells. This technical innovation, combined with its capability to accurately decode GRNs from scRNA-seq, establishes DeepIMAGER as a valuable tool for unraveling complex regulatory networks in various cell types.
理解不同细胞类型中基因调控网络 (GRN) 的动态是一项具有挑战性的任务,但对于揭示控制细胞过程的分子机制具有巨大的价值。目前的计算方法仅依赖于批量 RNA-seq 和/或 scRNA-seq 数据中的表达变化,往往会导致高假阳性率和低精度。在这里,我们引入了一种先进的计算工具 DeepIMAGER,通过深度学习和数据集成来推断细胞特异性 GRN。DeepIMAGER 采用有监督的方法,将基因对的共表达模式转化为类似图像的表示形式,并利用转录因子 (TF) 结合信息进行模型训练。它使用包含 scRNA-seq 谱和 ChIP-seq 数据的综合数据集进行训练,捕获了各种细胞类型中 TF-基因对信息。在六个细胞系上的综合验证表明,DeepIMAGER 在十种流行的 GRN 推断工具中的表现优于其他工具,并且对零事件具有显著的稳健性。DeepIMAGER 被应用于多发性骨髓瘤 (MM) 的 scRNA-seq 数据集,并检测到 MM 树突状细胞中 TF 、 、 和 的潜在 GRN。这项技术创新,结合其从 scRNA-seq 准确解码 GRN 的能力,使 DeepIMAGER 成为揭示各种细胞类型中复杂调控网络的有价值工具。