Suppr超能文献

DeepIMAGER:从 scRNA-seq 数据中深度分析基因调控网络。

DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data.

机构信息

College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China.

Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.

出版信息

Biomolecules. 2024 Jun 27;14(7):766. doi: 10.3390/biom14070766.

Abstract

Understanding the dynamics of gene regulatory networks (GRNs) across diverse cell types poses a challenge yet holds immense value in unraveling the molecular mechanisms governing cellular processes. Current computational methods, which rely solely on expression changes from bulk RNA-seq and/or scRNA-seq data, often result in high rates of false positives and low precision. Here, we introduce an advanced computational tool, DeepIMAGER, for inferring cell-specific GRNs through deep learning and data integration. DeepIMAGER employs a supervised approach that transforms the co-expression patterns of gene pairs into image-like representations and leverages transcription factor (TF) binding information for model training. It is trained using comprehensive datasets that encompass scRNA-seq profiles and ChIP-seq data, capturing TF-gene pair information across various cell types. Comprehensive validations on six cell lines show DeepIMAGER exhibits superior performance in ten popular GRN inference tools and has remarkable robustness against dropout-zero events. DeepIMAGER was applied to scRNA-seq datasets of multiple myeloma (MM) and detected potential GRNs for TFs of , , and in MM dendritic cells. This technical innovation, combined with its capability to accurately decode GRNs from scRNA-seq, establishes DeepIMAGER as a valuable tool for unraveling complex regulatory networks in various cell types.

摘要

理解不同细胞类型中基因调控网络 (GRN) 的动态是一项具有挑战性的任务,但对于揭示控制细胞过程的分子机制具有巨大的价值。目前的计算方法仅依赖于批量 RNA-seq 和/或 scRNA-seq 数据中的表达变化,往往会导致高假阳性率和低精度。在这里,我们引入了一种先进的计算工具 DeepIMAGER,通过深度学习和数据集成来推断细胞特异性 GRN。DeepIMAGER 采用有监督的方法,将基因对的共表达模式转化为类似图像的表示形式,并利用转录因子 (TF) 结合信息进行模型训练。它使用包含 scRNA-seq 谱和 ChIP-seq 数据的综合数据集进行训练,捕获了各种细胞类型中 TF-基因对信息。在六个细胞系上的综合验证表明,DeepIMAGER 在十种流行的 GRN 推断工具中的表现优于其他工具,并且对零事件具有显著的稳健性。DeepIMAGER 被应用于多发性骨髓瘤 (MM) 的 scRNA-seq 数据集,并检测到 MM 树突状细胞中 TF 、 、 和 的潜在 GRN。这项技术创新,结合其从 scRNA-seq 准确解码 GRN 的能力,使 DeepIMAGER 成为揭示各种细胞类型中复杂调控网络的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1370/11274664/ac1aa88ffd78/biomolecules-14-00766-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验