Suppr超能文献

机器学习在超声识别女性成人环甲切开术解剖标志中的应用:一项多中心前瞻性观察研究。

Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study.

机构信息

Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan.

Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

J Imaging Inform Med. 2024 Feb;37(1):363-373. doi: 10.1007/s10278-023-00929-3. Epub 2024 Jan 10.

Abstract

We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.

摘要

我们旨在开发基于机器学习(ML)的算法,以协助医生在环甲切开术中对环状软骨(CC)和甲状软骨(TC)进行超声引导定位。2020 年 9 月至 12 月期间,我们前瞻性地从两家医院招募了成年女性志愿者。使用改良的纵向技术采集超声图像。我们选择了 You Only Look Once (YOLOv5s)、Faster Regions with Convolutional Neural Network features (Faster R-CNN) 和 Single Shot Detector (SSD) 作为模型架构。共有 488 名女性(平均年龄:36.0 岁)参与了这项研究,总共贡献了 292,053 帧超声图像。基于 ML 的算法在 CC(接收者操作特征曲线下面积 [AUC]:YOLOv5s,0.989,95%置信区间 [CI]:0.982-0.994;Faster R-CNN,0.986,95%CI:0.980-0.991;SSD,0.968,95%CI:0.956-0.977)和 TC(AUC:YOLOv5s,0.989,95%CI:0.977-0.997;Faster R-CNN,0.981,95%CI:0.965-0.991;SSD,0.982,95%CI:0.973-0.990)的存在方面表现出出色的判别性能。此外,在模型能够正确指示 CC 或 TC 存在的帧中,它还可以准确地定位 CC(交并比:YOLOv5s,0.753,95%CI:0.739-0.765;Faster R-CNN,0.720,95%CI:0.709-0.732;SSD,0.739,95%CI:0.726-0.751)或 TC(交并比:YOLOv5s,0.739,95%CI:0.722-0.755;Faster R-CNN,0.709,95%CI:0.687-0.730;SSD,0.713,95%CI:0.695-0.730)。基于 ML 的算法可以识别成年女性环甲切开术的解剖标志,具有良好的判别和定位性能。需要进一步的研究将该算法转移到手持便携式超声设备中,以用于临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/995d/11031510/9fc1bf0878ad/10278_2023_929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验