Suppr超能文献

基于相位对比 MRI 和深度学习的全脑血流自动定量分析。

Automated Quantification of Total Cerebral Blood Flow from Phase-Contrast MRI and Deep Learning.

机构信息

School of Electronic and Electrical Engineering, Kyungpook National University, IT1-603, Daehak-ro 80, Buk-gu, Daegu, 41075, Republic of Korea.

Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

J Imaging Inform Med. 2024 Apr;37(2):563-574. doi: 10.1007/s10278-023-00948-0. Epub 2024 Jan 10.

Abstract

Knowledge of input blood to the brain, which is represented as total cerebral blood flow (tCBF), is important in evaluating brain health. Phase-contrast (PC) magnetic resonance imaging (MRI) enables blood velocity mapping, allowing for noninvasive measurements of tCBF. In the procedure, manual selection of brain-feeding arteries is an essential step, but is time-consuming and often subjective. Thus, the purpose of this work was to develop and validate a deep learning (DL)-based technique for automated tCBF quantifications. To enhance the DL segmentation performance on arterial blood vessels, in the preprocessing step magnitude and phase images of PC MRI were multiplied several times. Thereafter, a U-Net was trained on 218 images for three-class segmentation. Network performance was evaluated in terms of the Dice coefficient and the intersection-over-union (IoU) on 40 test images, and additionally, on externally acquired 20 datasets. Finally, tCBF was calculated from the DL-predicted vessel segmentation maps, and its accuracy was statistically assessed with the correlation of determination (R), the intraclass correlation coefficient (ICC), paired t-tests, and Bland-Altman analysis, in comparison to manually derived values. Overall, the DL segmentation network provided accurate labeling of arterial blood vessels for both internal (Dice=0.92, IoU=0.86) and external (Dice=0.90, IoU=0.82) tests. Furthermore, statistical analyses for tCBF estimates revealed good agreement between automated versus manual quantifications in both internal (R=0.85, ICC=0.91, p=0.52) and external (R=0.88, ICC=0.93, p=0.88) test groups. The results suggest feasibility of a simple and automated protocol for quantifying tCBF from neck PC MRI and deep learning.

摘要

了解输入大脑的血液,即全脑血流量(tCBF),对于评估大脑健康非常重要。相位对比(PC)磁共振成像(MRI)可以进行血流速度测绘,从而实现 tCBF 的非侵入性测量。在该过程中,手动选择脑供血动脉是一个必不可少的步骤,但既耗时又主观。因此,本工作旨在开发和验证一种基于深度学习(DL)的 tCBF 自动定量技术。为了提高 DL 分割动脉血管的性能,在预处理步骤中,对 PC MRI 的幅度和相位图像进行了多次相乘。然后,在 218 张图像上对 U-Net 进行了三分类分割训练。在 40 张测试图像上,根据 Dice 系数和交并比(IoU)评估网络性能,并在另外 20 个外部获取数据集上进行了评估。最后,根据 DL 预测的血管分割图计算 tCBF,并与手动生成的值进行统计评估,包括决定系数(R)、组内相关系数(ICC)、配对 t 检验和 Bland-Altman 分析。总体而言,DL 分割网络对内(Dice=0.92,IoU=0.86)外(Dice=0.90,IoU=0.82)测试都能准确地对动脉血管进行标记。此外,tCBF 估计的统计分析表明,在内部(R=0.85,ICC=0.91,p=0.52)和外部(R=0.88,ICC=0.93,p=0.88)测试组中,自动与手动定量之间具有良好的一致性。这些结果表明,从颈部 PC MRI 和深度学习中定量 tCBF 的简单自动协议具有可行性。

相似文献

1
Automated Quantification of Total Cerebral Blood Flow from Phase-Contrast MRI and Deep Learning.
J Imaging Inform Med. 2024 Apr;37(2):563-574. doi: 10.1007/s10278-023-00948-0. Epub 2024 Jan 10.
7
Fully automated measurement of aortic pulse wave velocity from routine cardiac MRI studies.
Magn Reson Imaging. 2025 Oct;122:110442. doi: 10.1016/j.mri.2025.110442. Epub 2025 May 30.
8
Automatic segmentation of chest X-ray images via deep-improved various U-Net techniques.
Digit Health. 2025 Aug 6;11:20552076251366855. doi: 10.1177/20552076251366855. eCollection 2025 Jan-Dec.

本文引用的文献

1
Cerebral oxygen metabolism from MRI susceptibility.
Neuroimage. 2023 Aug 1;276:120189. doi: 10.1016/j.neuroimage.2023.120189. Epub 2023 May 23.
2
Screening Lung Diseases Using Cascaded Feature Generation and Selection Strategies.
Healthcare (Basel). 2022 Jul 14;10(7):1313. doi: 10.3390/healthcare10071313.
3
Cerebral oxygen extraction fraction MRI: Techniques and applications.
Magn Reson Med. 2022 Aug;88(2):575-600. doi: 10.1002/mrm.29272. Epub 2022 May 5.
4
Deep learning-based predictive identification of neural stem cell differentiation.
Nat Commun. 2021 May 10;12(1):2614. doi: 10.1038/s41467-021-22758-0.
5
Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications.
Radiology. 2021 Apr;299(1):3-26. doi: 10.1148/radiol.2021203071. Epub 2021 Feb 23.
6
A review of the application of deep learning in medical image classification and segmentation.
Ann Transl Med. 2020 Jun;8(11):713. doi: 10.21037/atm.2020.02.44.
7
Cerebral Blood Flow Measured by Phase-Contrast Magnetic Resonance Angiography in Preterm and Term Neonates.
Neonatology. 2019;115(3):226-233. doi: 10.1159/000494368. Epub 2019 Jan 22.
8
Image Reconstruction is a New Frontier of Machine Learning.
IEEE Trans Med Imaging. 2018 Jun;37(6):1289-1296. doi: 10.1109/TMI.2018.2833635.
9
Deep Learning in Medical Image Analysis.
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
10
Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.
Neuroimage. 2017 Apr 1;149:393-403. doi: 10.1016/j.neuroimage.2017.02.011. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验