Suppr超能文献

二甲双胍介导的快速电荷反转纳米杂化用于癌症的深层穿透压电催化增强化学动力学免疫治疗。

Metformin-Mediated Fast Charge-Reversal Nanohybrid for Deep Penetration Piezocatalysis-Augmented Chemodynamic Immunotherapy of Cancer.

机构信息

Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.

National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

出版信息

ACS Nano. 2024 Feb 27;18(8):6314-6332. doi: 10.1021/acsnano.3c11174. Epub 2024 Feb 12.

Abstract

Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both FeO and BaTiO nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced HO based on piezocatalysis of BaTiO, which greatly enhanced the Fenton reaction of FeO, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.

摘要

免疫检查点阻断(ICB)疗法仍然存在免疫反应不足和 ICB 抗体不良反应的问题。化学动力学疗法(CDT)已被证明是与 ICB 疗法协同增效的有效方法。然而,CDT 平台产生的活性氧的代频率低和对肿瘤的穿透性差仍然降低了免疫效果。在此,我们构建了一种带正电荷的纳米杂化 Met@BF(同时包含 FeO 和 BaTiO3 纳米粒子的内核以及表面的二甲双胍(Met)),用于肿瘤微环境(TME)和超声(US)激活的压电催化-化学动力学免疫治疗癌症。有趣的是,Met@BF 在血液循环中带负电荷,当暴露于酸性 TME 时,由于 Met 中的叔胺季铵化,其迅速转变为正电荷,从而促进肿瘤的深层穿透。随后,在超声照射下,Met@BF 基于 BaTiO3 的压电催化产生 HO,这极大地增强了 FeO 的芬顿反应,从而增强了强大的抗肿瘤免疫反应。此外,局部释放的 Met 抑制了 PD-L1 的表达,进一步增强了抗肿瘤免疫效果,对原发性和转移性肿瘤都实现了有效的抑制。这种压电催化增强的化学动力学疗法与 Met 介导的肿瘤深层穿透和 PD-L1 下调的结合,为增强癌症免疫治疗提供了一种有前景的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验