Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
Planta. 2024 Feb 12;259(3):70. doi: 10.1007/s00425-024-04347-9.
The Aegilops tauschii resistant accession prevented the pathogen colonization by controlling the sugar flow and triggering the hypersensitive reaction. This study suggested that NBS-LRRs probably induce resistance through bHLH by controlling JA- and SA-dependent pathways. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is one of wheat's most destructive fungal diseases that causes a severe yield reduction worldwide. The most effective and economically-friendly strategy to manage this disease is genetic resistance which can be achieved through deploying new and effective resistance genes. Aegilops tauschii, due to its small genome and co-evolution with Pst, can provide detailed information about underlying resistance mechanisms. Hence, we used RNA-sequencing approach to identify the transcriptome variations of two contrasting resistant and susceptible Ae. tauschii accessions in interaction with Pst and differentially expressed genes (DEGs) for resistance to stripe rust. Gene ontology, pathway analysis, and search for functional domains, transcription regulators, resistance genes, and protein-protein interactions were used to interpret the results. The genes encoding NBS-LRR, CC-NBS-kinase, and phenylalanine ammonia-lyase, basic helix-loop-helix (bHLH)-, basic-leucine zipper (bZIP)-, APETALA2 (AP2)-, auxin response factor (ARF)-, GATA-, and LSD-like transcription factors were up-regulated exclusively in the resistant accession. The key genes involved in response to salicylic acid, amino sugar and nucleotide sugar metabolism, and hypersensitive response contributed to plant defense against stripe rust. The activation of jasmonic acid biosynthesis and starch and sucrose metabolism pathways under Pst infection in the susceptible accession explained the colonization of the host. Overall, this study can fill the gaps in the literature on host-pathogen interaction and enrich the Ae. tauschii transcriptome sequence information. It also suggests candidate genes that could guide future breeding programs attempting to develop rust-resistant cultivars.
节节麦抗源通过控制糖流和触发过敏反应来阻止病原菌的定殖。本研究表明,NBS-LRR 可能通过 bHLH 控制 JA 和 SA 依赖途径诱导抗性。条锈病由小麦条锈菌 (Pst) 引起,是小麦最具破坏性的真菌病害之一,可导致全球严重减产。管理这种疾病最有效和经济友好的策略是遗传抗性,可通过部署新的和有效的抗性基因来实现。节节麦由于其小基因组和与 Pst 的共同进化,可以提供有关潜在抗性机制的详细信息。因此,我们使用 RNA-seq 方法来鉴定与 Pst 相互作用的两个具有对比性的抗性和敏感节节麦品系的转录组变化,以及对条锈病的抗性差异表达基因 (DEGs)。使用基因本体论、途径分析以及功能域、转录调节因子、抗性基因和蛋白质-蛋白质相互作用的搜索来解释结果。编码 NBS-LRR、CC-NBS-激酶和苯丙氨酸解氨酶的基因、碱性螺旋-环-螺旋 (bHLH)、碱性亮氨酸拉链 (bZIP)、APETALA2 (AP2)、生长素响应因子 (ARF)、GATA-和 LSD 样转录因子在抗性品系中特异性上调。参与水杨酸、氨基糖和核苷酸糖代谢以及过敏反应的关键基因有助于植物抵抗条锈病。在易感品系中,Pst 感染下茉莉酸生物合成和淀粉和蔗糖代谢途径的激活解释了宿主的定殖。总体而言,本研究可以填补宿主-病原体相互作用文献中的空白,并丰富节节麦转录组序列信息。它还提出了候选基因,这些基因可以指导未来试图开发抗锈品种的育种计划。