Zapata-Arteaga Osnat, Dörling Bernhard, Perevedentsev Aleksandr, Martín Jaime, Reparaz J Sebastian, Campoy-Quiles Mariano
Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus of the UAB, 08193 Bellaterra, Spain.
POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
Macromolecules. 2020 Jan 28;53(2):609-620. doi: 10.1021/acs.macromol.9b02263. Epub 2020 Jan 8.
Two doping mechanisms are known for the well-studied materials poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-]thiophene) (PBTTT), namely, integer charge transfer (ICT) and charge transfer complex (CTC) formation. Yet, there is poor understanding of the effect of doping mechanism on thermal stability and the thermoelectric properties. In this work, we present a method to finely adjust the ICT to CTC ratio. Using it, we characterize electrical and thermal conductivities as well as the Seebeck coefficient and the long-term stability under thermal stress of P3HT and PBTTT of different ICT/CTC ratios. We establish that doping through the CTC results in more stable, yet lower conductivity samples compared to ICT doped films. Importantly, moderate CTC fractions of ∼33% are found to improve the long-term stability without a significant sacrifice in electrical conductivity. Through visible and IR spectroscopies, polarized optical microscopy, and grazing-incidence wide-angle X-ray scattering, we find that the CTC dopant molecule access sites within the polymer network are less prone to dedoping upon thermal exposure.
对于研究充分的材料聚(3-己基噻吩)(P3HT)和聚(2,5-双(3-烷基噻吩-2-基)噻吩并[3,2-b]噻吩)(PBTTT),已知两种掺杂机制,即整数电荷转移(ICT)和电荷转移络合物(CTC)形成。然而,对于掺杂机制对热稳定性和热电性能的影响了解甚少。在这项工作中,我们提出了一种精细调节ICT与CTC比例的方法。利用该方法,我们表征了不同ICT/CTC比例的P3HT和PBTTT的电导率、热导率、塞贝克系数以及热应力下的长期稳定性。我们发现,与ICT掺杂薄膜相比,通过CTC进行掺杂会导致样品更稳定,但电导率更低。重要的是,发现约33%的适度CTC比例可提高长期稳定性,而不会显著牺牲电导率。通过可见光谱和红外光谱、偏振光学显微镜以及掠入射广角X射线散射,我们发现聚合物网络内的CTC掺杂剂分子进入位点在热暴露时不易去掺杂。